【題目】過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),分別過A、B兩點(diǎn)作準(zhǔn)線的垂線,垂足分別為A′、B′兩點(diǎn),以線段A′B′為直徑的圓C過點(diǎn)(﹣2,3),則圓C的方程為( )
A.(x+1)2+(y﹣2)2=2
B.(x+1)2+(y﹣1)2=5
C.(x+1)2+(y+1)2=17
D.(x+1)2+(y+2)2=26
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某重點(diǎn)中學(xué)將全部高一學(xué)生分成兩個(gè)成績(jī)相當(dāng)(成績(jī)的均值、方差都相同)的級(jí)部, 級(jí)部采用傳統(tǒng)形式的教學(xué)方式, 級(jí)部采用新型的基于信息化的自主學(xué)習(xí)教學(xué)方式.為了解教學(xué)效果,期末考試后分別從兩個(gè)級(jí)部中各隨機(jī)抽取30名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),做出莖葉圖如下,記成績(jī)不低于127分者為“優(yōu)秀”.
(1)在級(jí)部樣本的30個(gè)個(gè)體中隨機(jī)抽取1個(gè),求抽出的為“優(yōu)秀”的概率;
(2)由以上數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為“優(yōu)秀”與教學(xué)方式有關(guān).
附表:
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是正方體的平面展開圖,在這個(gè)正方體中
(1)BM與ED平行 (2)CN與BE是異面直線
(3)CN與BM成60° (4)DM與BN垂直
以上四個(gè)命題中,正確命題的序號(hào)是( )
A. (1)(2)(3) B. (2)(4) C. (3)(4) D. (2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點(diǎn)在橢圓上,橢圓的四個(gè)頂點(diǎn)的連線構(gòu)成的四邊形的面積為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn), 為橢圓上異于橢圓長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線斜率分別為、,若,請(qǐng)判斷直線是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,橢圓與軸與左焦點(diǎn)與點(diǎn)的距離為.
(1)求橢圓方程;
(2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積為時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)求函數(shù) 的最小正周期;
(2)若 ,且 ,求 的值.
【答案】(1) (2)
【解析】試題分析:(1)根據(jù)二倍角公式和兩角和差公式得到,進(jìn)而得到周期;(2)由,得到, ,由配湊角公式得到,代入值得到函數(shù)值.
解析:
(1)由題意
=
所以 的最小正周期為 ;
(2)由
又由 得 ,所以
故 ,
故
【題型】解答題
【結(jié)束】
20
【題目】為響應(yīng)十九大報(bào)告提出的實(shí)施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營(yíng)中,第一年支出 萬元,以后每年的支出比上一年增加了 萬元,從第一年起每年農(nóng)場(chǎng)品銷售收入為 萬元(前 年的純利潤(rùn)綜合=前 年的 總收入-前 年的總支出-投資額 萬元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤(rùn)達(dá)到最大?并求出年平均純利潤(rùn)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 : ( )的左、右焦點(diǎn)分別為 , ,其離心率為 ,短軸端點(diǎn)與焦點(diǎn)構(gòu)成四邊形的面積為 .
(1)求橢圓 的方程;
(2)若過點(diǎn) 的直線 與橢圓 交于不同的兩點(diǎn) 、 , 為坐標(biāo)原點(diǎn),當(dāng) 時(shí),試求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知圓O1與圓O2相交于A,B兩點(diǎn),過點(diǎn)A作圓O1的切線交圓O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交圓O1 , 圓O2于點(diǎn)D,E,DE與AC相交于點(diǎn)P.
(1)求證:AD∥EC;
(2)若AD是圓O2的切線,且PA=3,PC=1,AD=6,求DB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對(duì)任意,且,都有,則為R上減函數(shù);
(2) 若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)若一個(gè)函數(shù)定義域且的奇函數(shù),當(dāng)時(shí),,則當(dāng)x<0時(shí),其中正確的是____________________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com