( 12分)如圖,在四棱錐中,側(cè)面是正三角形,底面是邊長(zhǎng)為2的正方形,側(cè)面平面的中點(diǎn).

①求證:平面;

②求直線與平面所成角的正切值.

 

【答案】

(Ⅰ)證明:見解析;(Ⅱ),即求.

【解析】

試題分析:(Ⅰ)證明AF⊥平面PCD,利用線面垂直的判定定理,只需證明AF⊥PD,CD⊥AF即可;

(Ⅱ)證明∠PBF為直線PB與平面ABF所成的角,求出PF,BF的長(zhǎng),即可得出結(jié)論.

(Ⅰ)證明:如圖,由是正三角形,中點(diǎn),所以,又因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121810172773289469/SYS201212181018411391184355_DA.files/image006.png">平面,

;

  又底面為正方形,即

      所以平面,而平面,

      所以,且,

      所以平面.………………6分;

(Ⅱ)由(Ⅰ)證明可知,平面,

所以平面

所以,又由(Ⅰ)知,且,

所以平面,

為直線與平面所成的角…………………9分

,易知,中,,

所以,即求.………………12分

考點(diǎn):本題考查線面垂直,考查線面角,屬于中檔題.

點(diǎn)評(píng):解題的關(guān)鍵是正確運(yùn)用線面垂直的判定,作出線面角.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年福建師大附中模擬)(本小題滿分12分)

如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)面是正三角形,且平面平面,為棱的中點(diǎn)

   (1)求證:平面;

   (2)求二面角的大小;

   (3)求點(diǎn)到平面的距離.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧省分校高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖,在四棱錐中,底面是矩形,,分別為線段、的中點(diǎn),⊥底面.

(Ⅰ)求證:∥平面;

(Ⅱ)求證:平面^平面

(Ⅲ)若,求三棱錐的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽市高三第八次周考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖,在點(diǎn)上,過點(diǎn)//的位置(),

使得.

(I)求證:  (II)試問:當(dāng)點(diǎn)上移動(dòng)時(shí),二面角的平面角的余弦值是否為定值?若是,求出定值,若不是,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省年高一下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

如圖,在幾何體P-ABCD中,四邊形ABCD為矩形,PA⊥平面ABCD,AB=PA=2.

(1)當(dāng)AD=2時(shí),求證:平面PBD⊥平面PAC;

(2)若PC與AD所成角為45°,求幾何體P-ABCD的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省丹東市四校協(xié)作體高三第二次聯(lián)合考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖,在三棱錐中,,,, 點(diǎn),分別在棱上,且

   (I)求證:平面;

   (II)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的大;

   (III)是否存在點(diǎn)使得二面角為直二面角?并說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案