【題目】集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},則a的值為( )
A. 0 B. 1
C. 2 D. 4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2).
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a,b∈R,則“a>0,b>0”是“a+b>0”的
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線過(guò)點(diǎn),傾斜角,再以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線分別交于、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,過(guò)點(diǎn)和的直線與原點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)為橢圓的左、右焦點(diǎn),過(guò)作直線交橢圓于 兩點(diǎn),求△的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比平面幾何中的命題:“垂直于同一直線的兩條直線平行”,在立體幾何中,可以得到命題“__________”,這個(gè)類比命題的真假性是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列表示圖書(shū)借閱的流程正確的是( )
A. 入庫(kù)→閱覽→借書(shū)→找書(shū)→出庫(kù)→還書(shū) B. 入庫(kù)→找書(shū)→閱覽→借書(shū)→出庫(kù)→還書(shū)
C. 入庫(kù)→閱覽→借書(shū)→找書(shū)→還書(shū)→出庫(kù) D. 入庫(kù)→找書(shū)→閱覽→借書(shū)→還書(shū)→出庫(kù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱中,底面是直角三角形,,為側(cè)棱的中點(diǎn).
(1)求異面直線、所成角的余弦值;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在處取得極值,求的值;
(Ⅱ)若在區(qū)間上單調(diào)遞增, 求的取值范圍;
(Ⅲ)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com