已知橢圓的中心在坐標(biāo)原點,以坐標(biāo)軸為對稱軸,且經(jīng)過兩點P1(,1)、P2(-,-),求橢圓方程.
橢圓方程為+=1.
設(shè)橢圓方程為mx2+ny2=1(m>0,n>0,m≠n).
∵P1(,1)、P2(-,-)在橢圓上.
∴由題意可知解得
∴橢圓方程為+=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知之間滿足
(1)方程表示的曲線經(jīng)過一點,求b的值
(2)動點(x,y)在曲線(b>0)上變化,求x2+2y的最大值;
(3)由能否確定一個函數(shù)關(guān)系式,如能,求解析式;如不能,再加什么條件就可使之間建立函數(shù)關(guān)系,并求出解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓+=1上到兩個焦點距離之積最大的點的坐標(biāo)是_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F是橢圓=1的左焦點,Q是橢圓上任一點,P點分的比為2,則P的軌跡方程為_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓=1的焦距為2,則m的值等于__________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長、短軸端點分別為A、B,從此橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量是共線向量。
(1)求橢圓的離心率e;
(2)設(shè)Q是橢圓上任意一點, 分別是左、右焦點,求∠ 的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,離心率為,一個焦點是F(-m,0)(m是大于0的常數(shù)).
(1)求橢圓的方程;
(2)設(shè)Q是橢圓上的一點,且過點F、Q的直線l與y軸交于點M,若||=2||,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓=1的準(zhǔn)線平行于x軸,則實數(shù)m的取值范圍是(    )
A.-1<m<3B.-<m<3且m≠0
C.-1<m<3且m≠0D.m<-1且m≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓+="1" (a>b>0)的兩準(zhǔn)線間的距離為,離心率為,則橢圓的方程為(    )
A.+="1" B.+=1
C.+="1"D.+=1

查看答案和解析>>

同步練習(xí)冊答案