函數(shù)f(x)的定義域?yàn)镽,f(0)=2,對(duì)任意x∈R,f(x)+f′(x)>1,則不等式ex•f(x)>ex+1的解集為
 
考點(diǎn):函數(shù)的定義域及其求法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)h(x)=exf(x)-ex-1,則不等式exf(x)>ex+1的解集就是 h(x)>0 的解集.由此利用導(dǎo)數(shù)性質(zhì)能求出不等式ex•f(x)>ex+1的解集.
解答: 解:設(shè)h(x)=exf(x)-ex-1,
則不等式exf(x)>ex+1的解集就是 h(x)>0 的解集.
h(0)=1×2-1-1=0,
h′(x)=ex[f(x)+f′(x)]-ex
∵[f(x)+f′(x)]>1,
∴對(duì)于任意 x∈R,
ex[f(x)+f′(x)]>ex,
∴h'(x)=ex[f(x)+f'(x)]-ex>0
即h(x)在實(shí)數(shù)域內(nèi)單調(diào)遞增.
∵h(yuǎn)(0)=0,
∴當(dāng) x<0 時(shí),h(x)<0;當(dāng) x>0 時(shí),h(x)>0.
∴不等式ex•f(x)>ex+1的解集為:{x|x>0}.
故答案為:{x|x>0}.
點(diǎn)評(píng):本題考查不等式的解集的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且滿(mǎn)足:4a2cosB-2accosB=a2+b2-c2
(1)求角B的大。
(2)若b=
3
,a+c=3,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
an+3
(n∈N*),bn=(3n-1)(
n
2n
)•an,{bn}的前n項(xiàng)和為T(mén)n,若不等式(-1)nλ<Tn+
n
2(n+1)
對(duì)一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+2=0},且A∪B=A,A∩B=C,求實(shí)數(shù)a,m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知∠A、∠B、∠C是△ABC的三個(gè)內(nèi)角.求證:
(1)sin(A+B)=sinC;
(2)若sinA=sinB,則A=B;
(3)若∠A>∠B,則sinA>sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z∈C且滿(mǎn)足1<|z|<2,在復(fù)平面內(nèi),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)Z的集合是
 
圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈R*,x+9y=3,則xy的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
25
+
y2
16
=1上的一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為4,則P到另一焦點(diǎn)距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若平面α,β的法向量分別為
a
=(-1,2,4),
b
=(x,-1,-2),并且α⊥β,則x的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案