已知圓的圓心在直線上,且與直線相切于點(diǎn).
(Ⅰ)求圓方程;
(Ⅱ)點(diǎn)與點(diǎn)關(guān)于直線對稱.是否存在過點(diǎn)的直線,與圓相交于兩點(diǎn),且使三角形為坐標(biāo)原點(diǎn)),若存在求出直線的方程,若不存在用計(jì)算過程說明理由.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)首先求得過圓心與切點(diǎn)的直線,然后與直線聯(lián)立可求得圓心,再利用兩點(diǎn)間的距離公式可求得半徑,進(jìn)而求得圓的方程;(Ⅱ)首先根據(jù)對稱性求得的坐標(biāo),然后分直線的斜率是否存在兩種情況求解,求解過程中注意利用點(diǎn)到直線的距離公式.
試題解析:(Ⅰ)過切點(diǎn)且與垂直的直線為,即.
與直線聯(lián)立可求圓心為
所以半徑,
所以所求圓的方程為.
(Ⅱ)設(shè),∵點(diǎn)與點(diǎn)關(guān)于直線對稱,

注意:若沒證明,直接得出結(jié)果,不扣分.
1.當(dāng)斜率不存在時(shí),此時(shí)直線方程為,原點(diǎn)到直線的距離為,
同時(shí)令代人圓方程得,∴,
滿足題意,此時(shí)方程為
2.當(dāng)斜率存在時(shí),設(shè)直線的方程為,即
圓心到直線的距離,
設(shè)的中點(diǎn)為,連接,則必有,
中,,所以,
而原點(diǎn)到直線的距離為,所以,
整理,得,不存在這樣的實(shí)數(shù),
綜上所述直線的方程為
考點(diǎn):1.直線與圓的位置關(guān)系;2、點(diǎn)到直線的距離

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線y=x2-2x-3與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若直線x+y+a=0與圓C交于A,B兩點(diǎn),且AB=2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線yx2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線xya=0交于A,B兩點(diǎn),且OAOB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心在直線上,且與軸交于兩點(diǎn),.
(1)求圓的方程;
(2)求過點(diǎn)的圓的切線方程;
(3)已知,點(diǎn)在圓上運(yùn)動(dòng),求以,為一組鄰邊的平行四邊形的另一個(gè)頂點(diǎn)軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知是橢圓的右焦點(diǎn);圓軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).

(1)求橢圓的離心率;
(2)設(shè)圓軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn),試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C經(jīng)過A(1,1)、B(2,)兩點(diǎn),且圓心C在直線l:x-y+1=0上,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求經(jīng)過三點(diǎn)A(1,-1),B(1,4),C(4,-2)的圓的方程,并判斷與圓的位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn),直線。設(shè)圓的半徑為,圓心在上。

(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.

(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案