【題目】在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB =2BC,點Q為AE的中點.
(1)求證:AC//平面DQF;
(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,E是棱PC上的一點.
(1)證明:平面平面 .
(2)若,F(xiàn)是PB的中點,,,求直線DF與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)給出兩個條件:①,②,從中選出一個條件補充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個都選,則按第一個解答計分)在中,分別為內(nèi)角所對的邊( ).
(1)求;
(2)若,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,函數(shù),函數(shù).
(1)當時,求函數(shù)的零點個數(shù);
(2)若函數(shù)與函數(shù)的圖象分別位于直線的兩側(cè),求的取值集合;
(3)對于,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系x0y中,把曲線α為參數(shù))上每個點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程
(1)寫出的普通方程和的直角坐標方程;
(2)設點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|,a∈R.
(1)當f(2)+f(﹣2)>4時,求a的取值范圍;
(2)若a>0,x,y∈(﹣∞,a],不等式f(x)≤|y+3|+|y﹣a|恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com