【題目】設(shè)函數(shù)f(x)=|1﹣|
(1)求滿足f(x)=2的x值;
(2)是否存在實數(shù)a,b,且0<a<b<1,使得函數(shù)y=f(x)在區(qū)間[a,b]上的值域為[a,2b],若存在,求出a,b的值;若不存在,請說明理由.

【答案】解:(1)由f(x)=2知|1﹣|=2,所以=-1或=3,于是x=﹣1或x=
(2)因為當x∈(0,1)時,
易知f(x)在(0,1)上是減函數(shù),又0<a<b<1,y=f(x)在區(qū)間[a,b]上的值域為[a,2b]
所以
【解析】(1)利用函數(shù)的零點,去掉絕對值符號,即可求滿足f(x)=2的x值;
(2)化簡函數(shù)y=f(x)的表達式,判斷函數(shù)的單調(diào)性,然后利用在區(qū)間[a,b]上的值域為[a,2b],列出關(guān)于a,b的方程即可求出結(jié)果.
【考點精析】本題主要考查了函數(shù)的零點的相關(guān)知識點,需要掌握函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標.即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,空間四邊形ABCD中,AB=CD,AB⊥CD,E、F分別為BC、AD的中點,則EF和AB所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直二面角中,四邊形是邊長為2的正方形,,上的點,且平面.

(1)求證:;

(2)求二面角的余弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=(cosx﹣sinx)sin(x+)﹣2asinx+b(a>0).
(1)若b=1,且對任意 , 恒有f(x)>0,求a的取值范圍;
(2)若f(x)的最大值為1,最小值為﹣4,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(3+x)+ln(3﹣x).
(Ⅰ)求函數(shù)y=f(x)的定義域;
(Ⅱ)判斷函數(shù)y=f(x)的奇偶性;
(Ⅲ)若f(2m﹣1)<f(m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)f(x)與g(x)相等的一組是( 。
A.f(x)=x﹣1,g(x)=﹣1
B.f(x)=x2 , g(x)=(4
C.f(x)=log2x2 , g(x)=2log2x
D.f(x)=tanx,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, , 邊上的高,沿折起,使

(Ⅰ)證明:平面平面;

(Ⅱ)的中點,求與底面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1, 在直角梯形中, , , 為線段的中點. 沿折起,使平面 平面,得到幾何體,如圖2所示.

1)求證: 平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若為整數(shù),當時, 恒成立,求的最大值(其中的導(dǎo)函數(shù)).

查看答案和解析>>

同步練習(xí)冊答案