已知Sn是數(shù)列{an}的前n項(xiàng)和,Sn=an2+bn+c(a,b,c∈R),那么數(shù)列{an}( 。
A、不管a,b,c取何值是等差數(shù)列
B、當(dāng)a≠0時(shí)是等差數(shù)列
C、當(dāng)c=0時(shí)是等差數(shù)列
D、不管a,b,c取何值都不是等差數(shù)列
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列的前n項(xiàng)和的公式,可以看出當(dāng)c=0時(shí),Sn=an2+bn表示等差數(shù)列的前n項(xiàng)和,則數(shù)列是一個(gè)等差數(shù)列.
解答: 解:數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c
根據(jù)等差數(shù)列的前n項(xiàng)和的公式,可以看出當(dāng)c=0時(shí),Sn=an2+bn表示等差數(shù)列的前n項(xiàng)和,則數(shù)列是一個(gè)等差數(shù)列,
故選:C.
點(diǎn)評(píng):本題解題的關(guān)鍵是理解等差數(shù)列的前n項(xiàng)和公式的形式,是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=1且對(duì)任意的m,n∈N*都有am+n=am+an+mn,則
1
a1
+
1
a2
+
1
a3
++
1
a2013
=( 。
A、
2013
2014
B、
4026
2014
C、
2012
2013
D、
4024
2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2•(x-1)<0的解集是( 。
A、{x|x>1}
B、{x|x<1}
C、{x|0<x<1}
D、{x|x<1,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以原點(diǎn)為中心,焦點(diǎn)在y軸上的雙曲線C的一個(gè)焦點(diǎn)為F(0,2
2
),一個(gè)頂點(diǎn)為A(0,-2),則雙曲線C的方程為(  )
A、
y2
2
-
x2
2
=1
B、
y2
4
-
x2
12
=1
C、
y2
4
-
x2
4
=1
D、
y2
4
-
x2
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為得到函數(shù)y=sin(x+
π
3
)的圖象,可將函數(shù)y=cosx的圖象向右平移m(m>0)個(gè)單位長(zhǎng)度,則m的最小值是( 。
A、
11
6
π
B、
5
6
π
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

交通局對(duì)上班、下班高峰時(shí)的車(chē)速情況作抽樣調(diào)查,行駛時(shí)速(單位:km/h)的統(tǒng)計(jì)數(shù)據(jù)用莖葉圖表示如圖:

設(shè)上、下班時(shí)速的平均數(shù)分別為
.
x
、
.
x
,中位數(shù)分別為
.
m
、
.
m
,則( 。
A、
.
x
.
x
,
.
m
.
m
B、
.
x
.
x
,
.
m
.
m
C、
.
x
.
x
,
.
m
.
m
D、
.
x
.
x
,
.
m
.
m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[1,3]上任取一數(shù),則這個(gè)數(shù)大于等于1.5的概率為( 。
A、0.25B、0.5
C、0.6D、0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)
AC
-
DC
+
DA
=(  )
A、
AD
B、
DA
C、
DC
D、
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2013年第三季度,國(guó)家電網(wǎng)決定對(duì)城鎮(zhèn)居民民用電計(jì)費(fèi)標(biāo)準(zhǔn)做出調(diào)整,并根據(jù)用電情況將居民分為三類:第一類的用電區(qū)間在(0,170],第二類在(170,260],第三類在(260,+∞)(單位:千瓦時(shí)).某小區(qū)共有1000戶居民,現(xiàn)對(duì)他們的用電情況進(jìn)行調(diào)查,得到頻率分布直方圖如圖所示.
(1)求該小區(qū)居民用電量的中位數(shù)與平均數(shù);
(2)利用分層抽樣的方法從該小區(qū)內(nèi)選出5戶居民代表,若從該5戶居民代表中任選兩戶居民,求這兩戶居民用電資費(fèi)屬于不同類型的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案