【題目】如圖,在四面體中,,.
(1)證明:;
(2)若,,四面體的體積為2,證明:平面平面.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】分析:方法1:(1)作Rt△斜邊上的高,連,可得Rt△≌ Rt△,于是,由此可得平面,于是.(2)由題意得,
然后根據(jù)平面,四面體的體積可得,于是得到
,故,所以得平面,由面面垂直的判定定理可得結(jié)論.
方法2:(1)由三角形全等可得.取的中點(diǎn),連,,則有平面,從而可得.(2)由題意得△面積為,根據(jù)可得點(diǎn)到平面距離.然后在平面內(nèi)過(guò)作于,求得.
故得平面,可證得平面平面.
詳解:(1)解法1:如圖,作Rt△斜邊上的高,連.
∵,,
∴Rt△≌ Rt△.
于是可得.
又,
∴平面,
∵平面,
∴.
(2)在Rt△中,,,
∴,, ,
△的面積.
又平面,四面體的體積,
∴,
∴,,
∴.
∵,,
∴平面.
∵平面,
∴平面平面.
解法2:
(1)∵,,
∴Rt△≌Rt△.
∴.
取的中點(diǎn),連,,則,,
又
∴平面,
∵平面,
∴.
(2)在Rt△中,,,
∴△面積為.
設(shè)到平面距離為,
則,
∴.
在平面內(nèi)過(guò)作,垂足為,
∵,,
∴.
由點(diǎn)到平面距離定義知平面,
∵平面,
∴平面平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩隊(duì)學(xué)生參加“知識(shí)聯(lián)想”搶答賽,比賽規(guī)則:①主持人依次給出兩次提示,第一次提示后答對(duì)得2分,第二次提示后答對(duì)得1分,沒(méi)搶到或答錯(cuò)者不得分;②主持人給出第一個(gè)提示后開(kāi)始搶答,第一輪搶答出錯(cuò)失去第二輪答題資格;③每局比賽分兩輪,若第一輪搶答者給出正確答案,則此局比賽結(jié)束,若第一輪答題者答錯(cuò),主持人提示后另一隊(duì)直接答題。如果甲、乙兩隊(duì)搶到答題權(quán)機(jī)會(huì)均等,并且勢(shì)均力敵,第一個(gè)提示后答對(duì)概率均為;第二個(gè)提示后答對(duì)概率均為,為甲隊(duì)在一局比賽中的分.
(1)求甲在一局比賽中得分的分布列;
(2)若比賽共4局,求甲4局比賽中至少得6分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若時(shí),討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上恰有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足,其中,為常數(shù).已知銷售價(jià)格為7元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品成本為5元/千克,試確定銷售價(jià)格值,使商場(chǎng)每日銷售該商品所獲利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解人們對(duì)“2019年3月在北京召開(kāi)的第十三屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十三屆全國(guó)委員會(huì)第二次會(huì)議”的關(guān)注度,某部門(mén)從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如右表所示:
年齡 | 關(guān)注度非常高的人數(shù) |
15 | |
5 | |
15 | |
23 | |
17 |
(Ⅰ)由頻率分布直方圖,估計(jì)這100人年齡的中位數(shù)和平均數(shù);
(Ⅱ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“兩會(huì)”的關(guān)注度存在差異?
(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再?gòu)牧酥须S機(jī)選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.
45歲以下 | 45歲以上 | 總計(jì) | |
非常髙 | |||
一般 | |||
總計(jì) |
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,點(diǎn)在平面內(nèi)運(yùn)動(dòng),使得二面角的平面角與二面角的平面角互余,則點(diǎn)的軌跡是( )
A. 一段圓弧 B. 橢圓的一部分 C. 拋物線 D. 雙曲線的一支
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對(duì)幾何學(xué)、力學(xué)等學(xué)科作出過(guò)卓越貢獻(xiàn).為調(diào)查中學(xué)生對(duì)這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請(qǐng)他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”.他們的調(diào)查結(jié)果如下:
0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?
比較了解 | 不太了解 | 合計(jì) | |
理科生 | |||
文科生 | |||
合計(jì) |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數(shù);
(ii)從10人的樣本中隨機(jī)抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“, 兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“作品獲得一等獎(jiǎng)”.
若這四位同學(xué)只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com