【題目】下列選項(xiàng)中說法正確的是(

A.函數(shù)的單調(diào)減區(qū)間為

B.命題的否定是;

C.在三角形中,,則的逆否命題是真命題

D.冪函數(shù)過點(diǎn),則.

【答案】CD

【解析】

對選項(xiàng)逐一判斷,可得答案. A項(xiàng),先求函數(shù)的定義域,再根據(jù)復(fù)合函數(shù)單調(diào)性的判斷依據(jù)“同增異減”,可求函數(shù)的單調(diào)遞減區(qū)間. B項(xiàng),全稱量詞命題的否定是存在量詞命題,注意“一改量詞,二改結(jié)論”.C項(xiàng),原命題與其逆否命題是等價(jià)命題,故可利用正弦定理判斷原命題的真假. D項(xiàng),由冪函數(shù)的定義可得的值,把點(diǎn)代入解析式,可得的值,即求.

A項(xiàng),令,可得,

函數(shù)的定義域?yàn)?/span>.

又函數(shù)上單調(diào)遞減,且函數(shù)是增函數(shù),

函數(shù)的單調(diào)減區(qū)間為.A錯(cuò)誤.

B項(xiàng),全稱量詞命題的否定是存在量詞命題,

命題的否定是. B錯(cuò)誤.

C項(xiàng),三角形中,由正弦定理可得為三角形外接圓的半徑.

.

命題:在三角形中,,則是真命題.

原命題與其逆否命題是等價(jià)命題,故其逆否命題是真命題.故C正確.

D項(xiàng),是冪函數(shù),.

的圖象過點(diǎn).D正確.

故選:CD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年初,新型冠狀病毒肺炎(COVID19)在我國爆發(fā),全國人民團(tuán)結(jié)一心、積極抗疫,為全世界疫情防控爭取了寶貴的時(shí)間,積累了豐富的經(jīng)驗(yàn).某研究小組為了研究某城市肺炎感染人數(shù)的增長情況,在官方網(wǎng)站.上搜集了7組數(shù)據(jù),并依據(jù)數(shù)據(jù)制成如下散點(diǎn)圖:

圖中表示日期代號(例如21日記為“1”,22日記為“2”,以此類推).通過對散點(diǎn)圖的分析,結(jié)合病毒傳播的相關(guān)知識,該研究小組決定用指數(shù)型函數(shù)模型來擬合,為求出關(guān)于的回歸方程,可令,則線性相關(guān).初步整理后,得到如下數(shù)據(jù):,

1)根據(jù)所給數(shù)據(jù),求出關(guān)于的線性回歸方程:

2)求關(guān)于的回歸方程;若防控不當(dāng),請問為何值時(shí),累計(jì)確診人數(shù)的預(yù)報(bào)值將超過1000?(參考數(shù)據(jù):,結(jié)果保留整數(shù))

附:對于一組數(shù)據(jù),其線性回歸方程的斜率和截距的最小二乘估計(jì)公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率是,一個(gè)頂點(diǎn)是

)求橢圓的方程;

)設(shè)是橢圓上異于點(diǎn)的任意兩點(diǎn),且.試問:直線是否恒過一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是數(shù)列1,,…,的各項(xiàng)和,,.

1)設(shè),證明:內(nèi)有且只有一個(gè)零點(diǎn);

2)當(dāng)時(shí),設(shè)存在一個(gè)與上述數(shù)列的首項(xiàng)、項(xiàng)數(shù)、末項(xiàng)都相同的等差數(shù)列,其各項(xiàng)和為,比較的大小,并說明理由;

3)給出由公式推導(dǎo)出公式的一種方法如下:在公式中兩邊求導(dǎo)得:,所以成立,請類比該方法,利用上述數(shù)列的末項(xiàng)的二項(xiàng)展開式證明:時(shí)(其中表示組合數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,點(diǎn)是線段的中點(diǎn).

1)證明:平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形中,四邊形為長方形,為邊長為的正三角形,將沿折起,使得點(diǎn)在平面上的射影恰好在上.

(Ⅰ)當(dāng)時(shí),證明:平面平面

(Ⅱ)若,求平面與平面所成二面角的余弦值的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對產(chǎn)品進(jìn)行抽查檢測,現(xiàn)對某條生產(chǎn)線上隨機(jī)抽取的100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對比,并對每個(gè)產(chǎn)品進(jìn)行綜合評分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值,并求綜合評分的中位數(shù);

2)用樣本估計(jì)總體,視頻率作為概率,在該條生產(chǎn)線中隨機(jī)抽取3個(gè)產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,過F的直線與拋物線交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),則下列命題中正確的個(gè)數(shù)為(

面積的最小值為4;

②以為直徑的圓與x軸相切;

③記,的斜率分別為,,則;

④過焦點(diǎn)Fy軸的垂線與直線,分別交于點(diǎn)MN,則以為直徑的圓恒過定點(diǎn).

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxsinx+axa0).

1)若a1,求證:當(dāng)x1,)時(shí),fx)<2x1;

2)若fx)在(02π)上有且僅有1個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案