精英家教網 > 高中數學 > 題目詳情
為一條直線,、為三個互不重合的平面,給出下面三個語句:
// 
//
其中正確的序號是_____
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題共12分)
如圖,在正三棱柱ABC—A1B1C1中,點D是棱AB的中點,BC=1,AA1=
(1)求證:BC1//平面A1DC;
(2)求二面角D—A1C—A的大小

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分別是PA、PB、BC的中點.
(I)求證:EF平面PAD
(II)求平面EFG與平面ABCD所成銳二面角的大;
(III)若M為線段AB上靠近A的一個動點,問當AM長度等于多少時,直線MF與平面EFG所成角的正弦值等于?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,點D是AB的中點,
(I)       求證:AC⊥BC1;(II)求證:AC 1//平面CDB1;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)長方體                                   中,是側棱的中點 ,                 
(1)求直線與平面所成的角的大。
(2)求三棱錐的體積;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱錐底面
,分別在棱上,且 
(Ⅰ)求證:平面
(Ⅱ)當的中點時,求與平面所成的角的大;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,正三棱柱的所有棱長都為
中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)如圖,在正方體中,點的中點.               
(1)求證:
(2)求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知一圓錐面的頂點為S,軸線L與母線的夾角為30°,在軸線L上取一點C,使SC=4,過點C作一平面與軸線的夾角等于60°,則與截平面相切的兩個焦球中較小一個球的半徑為           .

查看答案和解析>>

同步練習冊答案