1.如圖給出的是計(jì)算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{20}$的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i>10B.i<10C.i<20D.i>20

分析 根據(jù)程序框圖進(jìn)行模擬計(jì)算即可.

解答 解:第一次,n=2,i=1滿足條件.,S=$\frac{1}{2}$,n=4,i=2,
第二次,n=4,i=2滿足條件.,S=$\frac{1}{2}$+$\frac{1}{4}$,n=6,i=3,

第10次,n=20,i=10,滿足條件,S=$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{20}$,n=22,i=11,
此時i=11不滿足條件.
故選:B

點(diǎn)評 本題主要考查程序框圖的判斷和識別,根據(jù)條件進(jìn)行模擬是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知A,B,C,D是同一球面上的四個點(diǎn),其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6則該球的表面積為32$\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ.
(1)求圓C的參數(shù)方程;
(2)設(shè)直線y=$\sqrt{3}$x+b與圓C相切,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.參數(shù)方程為$\left\{{\begin{array}{l}{x=-3+2cosθ}\\{y=4+2sinθ}\end{array}}\right.(θ為參數(shù))$,表示的曲線是( 。
A.B.橢圓C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)向量$\overrightarrow{BA}$=(3,2),$\overrightarrow{BC}$=(3,-4),$\overrightarrow{AD}$=(0,2),則( 。
A.$\overrightarrow{AB}∥\overrightarrow{BC}$B.$\overrightarrow{AB}∥\overrightarrow{AD}$C.$\overrightarrow{BC}∥\overrightarrow{AC}$D.$\overrightarrow{AC}∥\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=|x+1|-a|x-1|,若f(x)≤a|x+3|,則a的最小值$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是8,則判斷框內(nèi)m的取值范圍是( 。
A.(42,56]B.(20,30]C.(30,42]D.(20,42)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,ABCD是邊長為$2\sqrt{3}$的正方形,點(diǎn)E,F(xiàn)分別是邊BC,CD的中點(diǎn),將△ABE,△CEF,△ADF分別沿AE,EF,F(xiàn)A折起,使得B,C,D三點(diǎn)重合于點(diǎn)P,若四面體PAEF的四個頂點(diǎn)在同一個球的球面上,則該球的表面積是( 。
A.B.12πC.18πD.$9\sqrt{2}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在銳角△ABC中,角A,B,C所對的邊分別是a,b,c,且$\frac{1}{tanA}$+$\frac{1}{tanB}$=1,asinB=$\sqrt{3}$R(R為△ABC外接圓的半徑)
(Ⅰ)求∠C的值;
(Ⅱ)若c=$\sqrt{10}$,且$\frac{1}{a}$+$\frac{1}$=1,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案