【題目】設,

)求的單調區(qū)間和最小值;

)討論的大小關系;

)求的取值范圍,使得對任意成立.

【答案】(的單調減區(qū)間是,單調遞增區(qū)間是,最小值為;(II)當時, ,當時, ;(III.

【解析】試題分析:(I)求導,并判斷導數(shù)的符號確定函數(shù)的單調區(qū)間和極值、最值,即可求得結果;(Ⅱ)通過函數(shù)的導數(shù),利用函數(shù)的單調性,比較兩個函數(shù)的大小關系即可;(Ⅲ)利用(Ⅰ)的結論,轉化不等式,求解即可.

試題解析:(Ⅰ)由題設知、,∴,令,得

時, ,故的單調減區(qū)間.

時, ,故的單調遞增區(qū)間,因此,

的唯一值點,且為極小值點,從而是最小值點,所以最小值為.

(Ⅱ),則,當時, ,當,時,因此在內單調遞減,當時, .當時,

(Ⅲ)由(Ⅰ)知的最小值為,所以, ,對任意,成立,即,從而得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市某水產養(yǎng)殖戶進行小龍蝦銷售,已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價(元/千克)與時間第(天)之間的函數(shù)關系為:

,日銷售量(千克)與時間第(天)之間的函數(shù)關系如圖所示:

(1)求日銷售量與時間的函數(shù)關系式?

(2)哪一天的日銷售利潤最大?最大利潤是多少?

(3)在實際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈給村里的特困戶,在這前40天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)fx)=|2x1|+|2xa|.

(I)若fx)的最小值為2,求a的值;

(II)fx)≤|2x4|的解集包含[2,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)存在兩個極值點.

(Ⅰ)求實數(shù)a的取值范圍;

(Ⅱ)設分別是的兩個極值點且,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.

(1)求A∩(UB);

(2)若A∪C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:

①M={};②M={(x,y)|y=sinx+1};

③M={(x,y)|y=log2x};④M={(x,y)|y=ex﹣2}.

其中是“垂直對點集”的序號是( 。

A. ①② B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的一個焦點為,對應于這個焦點的準線方程為

(1)寫出拋物線C的方程;

(2)過F點的直線與曲線C交于A、B兩點,O點為坐標原點,求△AOB重心G的軌跡方程;

(3)點P是拋物線C上的動點,過點P作圓的切線,切點分別是M,N.當P點在何處時,|MN|的值最小?求出|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=lg(ax﹣bx),且f(1)=lg2,f(2)=lg12

(1)求a,b的值.

(2)當x∈[1,2]時,求f(x)的最大值.

(3)m為何值時,函數(shù)g(x)=ax的圖象與h(x)=bx﹣m的圖象恒有兩個交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線斜率為1,求函數(shù)上的最值;

(2)令,若時,恒成立,求實數(shù)的取值范圍;

(3)當時,證明.

查看答案和解析>>

同步練習冊答案