【題目】設,
(Ⅰ)求的單調區(qū)間和最小值;
(Ⅱ)討論與的大小關系;
(Ⅲ)求的取值范圍,使得對任意成立.
【答案】(Ⅰ)的單調減區(qū)間是,單調遞增區(qū)間是,最小值為;(II)當時, ,當時, ;(III).
【解析】試題分析:(I)求導,并判斷導數(shù)的符號確定函數(shù)的單調區(qū)間和極值、最值,即可求得結果;(Ⅱ)通過函數(shù)的導數(shù),利用函數(shù)的單調性,比較兩個函數(shù)的大小關系即可;(Ⅲ)利用(Ⅰ)的結論,轉化不等式,求解即可.
試題解析:(Ⅰ)由題設知、,∴,令,得
當時, ,故是的單調減區(qū)間.
當時, ,故是的單調遞增區(qū)間,因此,
是的唯一值點,且為極小值點,從而是最小值點,所以最小值為.
(Ⅱ)設,則,當時, 即,當,時,因此在內單調遞減,當時, 即.當時, 即
(Ⅲ)由(Ⅰ)知的最小值為,所以, ,對任意,成立,即,從而得.
科目:高中數(shù)學 來源: 題型:
【題目】某市某水產養(yǎng)殖戶進行小龍蝦銷售,已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價(元/千克)與時間第(天)之間的函數(shù)關系為:
,日銷售量(千克)與時間第(天)之間的函數(shù)關系如圖所示:
(1)求日銷售量與時間的函數(shù)關系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)在實際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈元給村里的特困戶,在這前40天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|+|2x-a|.
(I)若f(x)的最小值為2,求a的值;
(II)若f(x)≤|2x-4|的解集包含[-2,-1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.
(1)求A∩(UB);
(2)若A∪C=C,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={};②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};④M={(x,y)|y=ex﹣2}.
其中是“垂直對點集”的序號是( 。
A. ①② B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的一個焦點為,對應于這個焦點的準線方程為
(1)寫出拋物線C的方程;
(2)過F點的直線與曲線C交于A、B兩點,O點為坐標原點,求△AOB重心G的軌跡方程;
(3)點P是拋物線C上的動點,過點P作圓的切線,切點分別是M,N.當P點在何處時,|MN|的值最小?求出|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=lg(ax﹣bx),且f(1)=lg2,f(2)=lg12
(1)求a,b的值.
(2)當x∈[1,2]時,求f(x)的最大值.
(3)m為何值時,函數(shù)g(x)=ax的圖象與h(x)=bx﹣m的圖象恒有兩個交點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線斜率為1,求函數(shù)在上的最值;
(2)令,若時,恒成立,求實數(shù)的取值范圍;
(3)當且時,證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com