已知函數(shù)f(x)=ax
3-3x
2+1,若f(x)存在唯一的零點x
°,且x
°<0,則a的取值范圍是
.
考點:函數(shù)的零點
專題:計算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:由題意判斷出a>0,再由題意可知f(
)>0,從而求出a.
解答:
解:∵函數(shù)f(x)=ax
3-3x
2+1,f(0)=1,且f(x)存在唯一的零點x
°,且x
°<0,
∴a>0,
∴f′(x)=3ax
2-6x=3x(ax-2)=0時的解為x=0,x=
;
∴f(
)=a(
)
3-3(
)
2+1=
>0,
則a>2.
故答案為:a>2.
點評:本題考查了函數(shù)的零點的判斷,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
過點(0,1)且與直線y=2x垂直的直線方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知偶函數(shù)y=x
4+|3x+a|,則a=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在直角坐標(biāo)系中,曲線C
1的參數(shù)方程為
(t為參數(shù)),以平面直角坐標(biāo)系的原點為極點,x軸正半軸為極軸,建立極坐標(biāo)系,曲線C
2的方程為ρsinθ=1,則曲線C
1和C
2交點的直角坐標(biāo)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知圓M:(x-2)2+(y-2)2=10和點A(3,5),直線l經(jīng)過點A且與圓M相切.
(1)求直線l方程;
(2)過A作圓的兩條弦AB、AC,且直線AB和AC的斜率相反,求證直線BC的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,E,F(xiàn)分別在邊AB,AC上,D為BC的中點,滿足
=
=
=2,
•
=0,則 cos A=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=ax
2-(a-1)x+5在區(qū)間(
,1)上是增函數(shù),則實數(shù)a的取值范圍
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{bn}的通項為bn=nan(a>0),問{bn}是否存在最大項?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=ax
2-
(a∈R),若函數(shù)f(x)在區(qū)間[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>