已知集合A={i,i2,i3,i4}(i為虛數(shù)單位),給出下面四個(gè)命題:
①若x∈A,y∈A,則x+y∈A;
②若x∈A,y∈A,則x-y∈A;
③若x∈A,y∈A,則xy∈A;
④若x∈A,y∈A,則
x
y
∈A.
其中正確命題的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
分析:把所給的集合中的四個(gè)元素進(jìn)行驗(yàn)證,根據(jù)虛數(shù)的單位的性質(zhì),得到前兩個(gè)正確,后兩個(gè)錯(cuò)誤,本題因?yàn)榧系臄?shù)字較少,可以采用逐個(gè)驗(yàn)證的方法.
解答:解:∵集合A={i,i2,i3,i4}
①若x∈A,y∈A,則x+y∈A,不正確,可以取x=1,y=-1,則x+y=0不屬于A,故①不正確,
②若x∈A,y∈A,則x-y∈A;同樣取第一個(gè)中出現(xiàn)的兩個(gè)數(shù)字驗(yàn)證,故②不正確,
③若x∈A,y∈A,則xy∈A;分別取集合中的4個(gè)數(shù)字進(jìn)行驗(yàn)證,故③正確,
④若x∈A,y∈A,則
x
y
∈A,分別取集合中的4個(gè)數(shù)字進(jìn)行驗(yàn)證,故④正確,
總上所述有兩個(gè)說(shuō)法是正確的.
故選B.
點(diǎn)評(píng):本題考查復(fù)數(shù)的虛數(shù)單位性質(zhì),是一個(gè)基礎(chǔ)題,包括復(fù)數(shù)的加減乘除運(yùn)算,這種題目一般不會(huì)出成解答題,而是以選擇和填空形式出現(xiàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a1,a2,a3…an},記和ai+aj(1≤i≤j≤n)中所有不同值的個(gè)數(shù)為M(A),如當(dāng)A={1,2,3,4}時(shí),由1+2=3,1+3=4,1+4=2+3=5,2+4=6,3+4=7,得M(A)=5.對(duì)于集合B={b1,2,b3…bn},若實(shí)數(shù)b1,b2…bn成等差數(shù)列,則M(B)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={m|m=3+bi,b∈R},B={n|n=1+b+i,b∈R},則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+(a-1)x-a>0},B={x|(x+a)(x+b)>0}.M={x|x2-2x-3≤0},全集I=R.
(1)若a<b且CIB=M,求實(shí)數(shù)a,b的值;
(2)若a>b>-1,求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•懷柔區(qū)一模)已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q);
(Ⅱ)對(duì)于集合A={a1,a2,a3,…,an},猜測(cè)ai+aj(1≤i<j≤n)的值最多有多少個(gè);
(Ⅲ)若集合A={2,4,8,…,2n},試求l(A).

查看答案和解析>>

同步練習(xí)冊(cè)答案