精英家教網 > 高中數學 > 題目詳情
若集合A={x|x2+ax-b=0}={3,4},則a=
 
,b=
 
分析:利用集合相等得到3,4是A中的元素;利用韋達定理列出方程求出a,b的值.
解答:解:據題意知x2+ax-b=0的兩個根是3,4
由韋達定理得
3+4=-a
3×4=-b

解得a=-7,b=-12
故答案為:-7;-12
點評:本題考查集合相等的定義:元素相同,考查一元二次方程的韋達定理.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若集合A={x|x2≤9},B={x|x2-5x-6<0},則A∪B=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

有下列四種說法:
①函數y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},則A∩B={-1};
③函數y=f(x)與函數y=f(-x)的圖象關于直線x=0對稱;
④已知A=B=R,對應法則f:x→y=
1
x+1
,則對應f是從A到B的映射.
其中你認為不正確的是
①②④
①②④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•溫州一模)若集合A={x|x2-2x<0},B={x|y=lg(x-1)},則A∩B為
{x|1<x<2}
{x|1<x<2}

查看答案和解析>>

科目:高中數學 來源: 題型:

若集合A={x|x2-|x|-6<0},B={x|
2x
≥1},求A∩CRB

查看答案和解析>>

科目:高中數學 來源: 題型:

若集合A={x|x2+ax+1=0,x∈R},集合B={1,2},且A∪B=B,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案