如圖,在四棱錐中,為正三角形,平面,為的中點.
(1)求證:平面;
(2)求證:平面.
(1)詳見解析;(2)詳見解析.
解析試題分析:(1)本題中先取的中點,然后根據(jù)題意易證且,從而四邊形是平行四邊形,這樣就可得到,最后就是由線面平行的判定定理可得結(jié)論;(2)根據(jù)(1)中所證得的,要證平面,只須證平面,由題中的條件不難證明,最后由線面垂直的判定定理可得平面,根據(jù),可得結(jié)論.
試題解析:證明: (1)取的中點,連接
則 2分
且,則四邊形是平行四邊形
,平面內(nèi),所以平面 6分
(2) 平面,,所以平面,而面,所以
因為為的中點且為正三角形,所以
又,所以平面
又 平面 12分.
考點:1.線面平行的證明;2.線面垂直的證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四邊形EFGH所在平面為三棱錐A-BCD的一個截面,四邊形EFGH為平行四邊形.
(1)求證:AB∥平面EFGH,CD∥平面EFGH.
(2)若AB=4,CD=6,求四邊形EFGH周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三棱錐的側(cè)棱與底面垂直,,, M、N分別是的中點,點P在線段上,且,
(1)證明:無論取何值,總有.
(2)當(dāng)時,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三棱柱的側(cè)棱長和底面邊長均為2,在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:
(1)聯(lián)結(jié),求異面直線與所成角的大;
(2)聯(lián)結(jié)、,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線AC與BD的交點,M是PD的中點,AB=2,∠BAD=60°.
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC;
(3)當(dāng)四棱錐P-ABCD的體積等于時,求PB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com