設F1、F2為橢圓+y2=1的兩焦點,P在橢圓上,當△F1PF2面積為1時, 的值為                                          (  )

A.0    B.1    C.2    D.

A


解析:

△F1PF2面積為1可以解得P點的坐標進而可以求出與.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設F1、F2為橢圓
x2
4
+y2=1的左、右焦點,過橢圓中心任作一直線與橢圓交于P、Q兩點,當四邊形PF1QF2面積最大時,
PF1
PF2
的值等于(  )
A、0B、2C、4D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點,長軸的一個頂點坐標為(2,0),離心率為
3
2

(1)求橢圓C的標準方程;
(2)設F1,F(xiàn)2為橢圓C的焦點,P為橢圓上一點,且PF1⊥PF2,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2為橢圓
x2
9
+
y2
4
=1
的兩個焦點,P為橢圓上的一點,已知P,F(xiàn)1,F(xiàn)2是一個直角三角形的三個頂點,且|PF1|>|PF2|,求
|PF1|
|PF2|
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2為橢圓
x2
4
+
y2
3
=1
左、右焦點,過橢圓中心任作一條直線與橢圓交于P,Q兩點,當四邊形PF1QF2面積最大時,
PF1
PF2
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2為橢圓
x2
3
+
y2
2
=1
的左、右焦點,過橢圓中心任作一直線與橢圓交于P,Q兩點,則四邊形PF1QF2面積的最大值為
2
2
2
2

查看答案和解析>>

同步練習冊答案