如圖,在棱長為1的正方體中.

⑴求異面直線所成的角;
⑵求證:平面平面
(Ⅰ). (Ⅱ)利用線面垂直證明面面垂直 

試題分析:(Ⅰ)如圖,,則就是異面直線所成的角.
連接,在中,,則,
因此異面直線所成的角為

(Ⅱ) 由正方體的性質(zhì)可知 , 故
正方形中,,
,∴ ;     
,∴平面. 
點(diǎn)評:以正方體為載體考查立體幾何中的線面、面面、點(diǎn)面位置關(guān)系或體積是高考的亮點(diǎn),掌握其判定性質(zhì)及定理,是解決此類問題的關(guān)鍵
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正四棱錐中,底面是邊長為2的正方形,側(cè)棱,的中點(diǎn),是側(cè)棱上的一動點(diǎn)。

(1)證明:
(2)當(dāng)直線時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三棱錐的底面是直角三角形,且,平面,,是線段的中點(diǎn),如圖所示.

(Ⅰ)證明:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理科)(本小題滿分12分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點(diǎn).

(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點(diǎn),求CP+PB1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線,平面,且,給出四個命題:   ①若,則;②若,則;③若,則∥m;④若∥m,則.其中真命題的個數(shù)是
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,點(diǎn)P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是(  )
A.90°  B.60° 
C.45°  D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有以下四個命題:  其中真命題的序號是                      (  )
①若,則;②若,則;
③若,則;   ④若,則
①②     ③④     ①④        ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、是兩條不同的直線,是一個平面,則下列命題正確的是(  )
A.若,,則B.若,,則
C.若,,則D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是直線,是兩個不同的平面,下列命題成立的是(    )
A.若,則
B.若,則
C.若, 則
D.若,則

查看答案和解析>>

同步練習(xí)冊答案