【題目】已知平面上一個圓可以將平面分成兩個部分,兩個圓最多可以將平面分成4個部分,設平面上個圓最多可以將平面分成個部分.
求,的值;
猜想的表達式并證明;
證明:.
【答案】(1)8,14;(2),證明見解析;(3)證明見解析
【解析】
由題意可知:,;猜想并用數(shù)學歸納法證明可得解;
證明:討論當或2或3時,,且時,用數(shù)列單調性的證明方法定義法證明即可.
由已知有:,,
,
下面用數(shù)學歸納法證明:
當時,結論成立;
假設時,結論成立,即平面上k個圓最多可以將平面分成個部分,
那么當時,第個圓與前k個圓最多有2k個交點,即此第個圓最多被這2k個交點分成2k條圓弧段,由于每增加一個圓弧段,可將原來的區(qū)域分成兩個區(qū)域,因此第個圓使平面增加了2k個區(qū)域,
所以,
綜合得:即平面上n個圓最多可以將平面分成個部分,
即命題得證
證明:當或2或3時,,
即,
且時,
設,
則,
設,
因為,所以,所以
所以時,數(shù)列是單調遞減數(shù)列,所以,
所以,
綜合得:.
故不等式得證.
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐中,底面是邊長為的菱形,側面底面,60°, , 是中點,點在側棱上.
(Ⅰ)求證: ;
(Ⅱ)是否存在,使平面 平面?若存在,求出,若不存在,說明理由.
(Ⅲ)是否存在,使平面?若存在,求出.若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙二人進行定點投籃比賽,已知甲、乙兩人每次投進的概率均為,兩人各投一次稱為一輪投籃.
求乙在前3次投籃中,恰好投進2個球的概率;
設前3輪投籃中,甲與乙進球個數(shù)差的絕對值為隨機變量,求的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)下列條件解三角形,有兩解的有( )
A.已知a,b=2,B=45°B.已知a=2,b,A=45°
C.已知b=3,c,C=60°D.已知a=2,c=4,A=45°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求,判斷函數(shù)的單調性并證明.
(2)對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下命題為假命題的是( )
A. “若m>0,則方程x2+x-m=0有實數(shù)根”的逆命題
B. “面積相等的三角形全等”的否命題
C. “若xy=1,則x,y互為倒數(shù)”的逆命題
D. “若A∪B=B,則AB”的逆否命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年6月14日,第二十一屆世界杯尼球賽在俄羅斯拉開了帷幕,某大學在二年級作了問卷調查,從該校二年級學生中抽取了人進行調查,其中女生中對足球運動有興趣的占,而男生有人表示對足球運動沒有興趣.
(1)完成列聯(lián)表,并回答能否有的把握認為“對足球是否有興趣與性別有關”?
有興趣 | 沒有興趣 | 合計 | |
男 | |||
女 | |||
合計 |
(2)若將頻率視為概率,現(xiàn)再從該校二年級全體學生中,采用隨機抽樣的方法每飲抽取名學生,抽取次,記被抽取的名學生中對足球有興趣的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列和數(shù)學期望.
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com