【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式
(3)若f(x)≤m2﹣2am+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:函數(shù)f(x)在[﹣1,1]上單調(diào)增,證明如下

由題意,設(shè)x1,x2∈[﹣1,1],且x1<x2

則x1﹣x2<0

∵x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.

令x=x1,y=﹣x2,

∴f(x1)+f(﹣x2)<0

∵函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù)

∴f(x1)﹣f(x2)<0

∴函數(shù)f(x)在[﹣1,1]上單調(diào)增


(2)解:由(1)知, ,解得:
(3)解:由于函數(shù)f(x)在[﹣1,1]上單調(diào)增,

∴函數(shù)f(x)在[﹣1,1]上的最大值為f(1)=1

∴f(x)≤m2﹣2am+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立可轉(zhuǎn)化為:0≤m2﹣2am對(duì)所有a∈[﹣1,1]恒成立

,

解得m≥2或m≤﹣2或m=0


【解析】(1)設(shè)x1 , x2∈[﹣1,1],且x1<x2 , 則x1﹣x2<0,利用x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0,可得f(x1)+f(﹣x2)<0,根據(jù)函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),即可得函數(shù)f(x)在[﹣1,1]上單調(diào)增;(2)由(1)知, ,解之即可;(3)先確定函數(shù)f(x)在[﹣1,1]上的最大值為f(1)=1,將f(x)≤m2﹣2am+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立轉(zhuǎn)化為:0≤m2﹣2am對(duì)所有a∈[﹣1,1]恒成立,從而可求實(shí)數(shù)m的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解奇偶性與單調(diào)性的綜合的相關(guān)知識(shí),掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2=4和直線l:x=4,M為l上一動(dòng)點(diǎn),A1 , A2為圓C與x軸的兩個(gè)交點(diǎn),直線MA1 , MA2與圓C的另一個(gè)交點(diǎn)分別為P、Q.
(1)若M點(diǎn)的坐標(biāo)為(4,2),求直線PQ方程;
(2)求證直線PQ過定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5 , 給出下列五個(gè)命題:①d<1;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11;⑤|a6|>|a7|.其中正確命題有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式對(duì)一切都成立,則的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=
(1)當(dāng) 時(shí),求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

為慶祝“2017年中國(guó)長(zhǎng)春國(guó)際馬拉松賽”,某單位在慶祝晚會(huì)中進(jìn)行嘉賓現(xiàn)場(chǎng)抽獎(jiǎng)活動(dòng).抽獎(jiǎng)盒中裝有大小相同的6個(gè)小球,分別印有“長(zhǎng)春馬拉松”和“美麗長(zhǎng)春”兩種標(biāo)志,搖勻后,規(guī)定參加者每次從盒中同時(shí)抽取兩個(gè)小球(登記后放回并搖勻),若抽到的兩個(gè)小球都印有“長(zhǎng)春馬拉松”即可中獎(jiǎng),并停止抽獎(jiǎng),否則繼續(xù),但每位嘉賓最多抽取3次.已知從盒中抽取兩個(gè)小球不都是“美麗長(zhǎng)春”標(biāo)志的概率為.

(Ⅰ)求盒中印有“長(zhǎng)春馬拉松”標(biāo)志的小球個(gè)數(shù);

(Ⅱ)用η表示某位嘉賓抽獎(jiǎng)的次數(shù),求η的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF= ,給出下列結(jié)論:
(1)AC⊥BE;
(2)EF∥平面ABCD;
(3)三棱錐A﹣BEF的體積為定值;
(4)異面直線AE,BF所成的角為定值.
其中錯(cuò)誤的結(jié)論有( )

A.0個(gè)
B.1 個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知),,其中為自然對(duì)數(shù)的底數(shù).

(1)若恒成立,求實(shí)數(shù)的取值范圍;

(2)若在(1)的條件下,當(dāng)取最大值時(shí),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為
(1)求拋物線的方程;
(2)若拋物線與直線y=2x﹣5無(wú)公共點(diǎn),試在拋物線上求一點(diǎn),使這點(diǎn)到直線y=2x﹣5的距離最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案