【題目】已知,函數(shù).若函數(shù)在區(qū)間上有兩個零點,則的取值范圍是________.若其在區(qū)間上至少有一個零點,則的最小值是________.
【答案】
【解析】
(1)首先設(shè),由已知條件求的范圍,再表示,求的范圍;(2)經(jīng)過整理,換元,方程變形為為關(guān)于的直線,那么,表示直線上的點到原點的距離的平方,那么距離的最小值就是原點到直線的距離,利用點到直線的距離求最小值.
(1)設(shè)兩個零點為,
所以,
設(shè),
則,
由條件可知 ,
,
,
所以的范圍是.
(2)由題意可知存在使 ,
整理為:
設(shè),整理為關(guān)于的直線,
那么,表示直線上的點到原點的距離的平方,
那么距離的最小值就是原點到直線的距離
所以,當(dāng)時,是單調(diào)遞增函數(shù),當(dāng)是取得最小值.
即的最小值是.
故答案為: ;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為常數(shù), ,函數(shù), (其中是自然對數(shù)的底數(shù)).
(1)過坐標(biāo)原點作曲線的切線,設(shè)切點為,求證: ;
(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,是橢圓的三個頂點,橢圓的離心率,點到直線的距離是.設(shè)是橢圓上位于軸左邊上的任意一點,直線,分別交直線于,兩點,以為直徑的圓記為.
(1)求橢圓的方程;
(2)求證:圓始終與圓:相切,并求出所有圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點.
(1)求證:平面BEF⊥平面MAD;
(2)若,求三棱錐E-ABF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且EF=.則下列結(jié)論中正確的個數(shù)為
①AC⊥BE;
②EF∥平面ABCD;
③三棱錐A﹣BEF的體積為定值;
④的面積與的面積相等,
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的準(zhǔn)線與x軸的交點為H,點F為拋物線的焦點,點P在拋物線上且,當(dāng)k最大時,點P恰好在以H,F為焦點的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項和為,若存在正整數(shù),且,使得,同時成立,則稱數(shù)列為“數(shù)列”.
(1)若首項為,公差為的等差數(shù)列是“數(shù)列”,求的值;
(2)已知數(shù)列為等比數(shù)列,公比為.
①若數(shù)列為“數(shù)列”,,求的值;
②若數(shù)列為“數(shù)列”,,求證:為奇數(shù),為偶數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com