【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求證:平面PED⊥平面PAC;
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.
【答案】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA ∴PA⊥平面ABCD
結(jié)合AB⊥AD,可得
分別以AB、AD、AP為x軸、y軸、z軸,建立空間直角坐標(biāo)系o﹣xyz,如圖所示
可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),
P(0,0,λ) (λ>0)
∴ , ,
得 , ,
∴DE⊥AC且DE⊥AP,
∵AC、AP是平面PAC內(nèi)的相交直線,∴ED⊥平面PAC.
∵ED平面PED∴平面PED⊥平面PAC
(Ⅱ)由(Ⅰ)得平面PAC的一個(gè)法向量是 ,
設(shè)直線PE與平面PAC所成的角為θ,
則 ,解之得λ=±2
∵λ>0,∴λ=2,可得P的坐標(biāo)為(0,0,2)
設(shè)平面PCD的一個(gè)法向量為 =(x0 , y0 , z0), ,
由 , ,得到 ,
令x0=1,可得y0=z0=﹣1,得 =(1,﹣1,﹣1)
∴cos< ,
由圖形可得二面角A﹣PC﹣D的平面角是銳角,
∴二面角A﹣PC﹣D的平面角的余弦值為 .
【解析】(I)由面面垂直的性質(zhì)定理證出PA⊥平面ABCD,從而得到AB、AD、AP兩兩垂直,因此以AB、AD、AP為x軸、y軸、z軸,建立坐標(biāo)系o﹣xyz,得A、D、E、C、P的坐標(biāo),進(jìn)而得到 、 、 的坐標(biāo).由數(shù)量積的坐標(biāo)運(yùn)算公式算出 且 ,從而證出DE⊥AC且DE⊥AP,結(jié)合線面垂直判定定理證出ED⊥平面PAC,從而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一個(gè)法向量是 ,算出 、 夾角的余弦,即可得到直線PE與平面PAC所成的角θ的正弦值,由此建立關(guān)于θ的方程并解之即可得到λ=2.利用垂直向量數(shù)量積為零的方法,建立方程組算出 =(1,﹣1,﹣1)是平面平面PCD的一個(gè)法向量,結(jié)合平面PAC的法向量 ,算出 、 的夾角余弦,再結(jié)合圖形加以觀察即可得到二面角A﹣PC﹣D的平面角的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形和菱形所在平面互相垂直,如圖,其中,,,點(diǎn)是線段的中點(diǎn).
(Ⅰ)試問在線段上是否存在點(diǎn),使得直線平面?若存在,請(qǐng)證明平面,并求出的值;若不存在,請(qǐng)說明理由;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= sin ,若存在f(x)的極值點(diǎn)x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)試判斷函數(shù)的零點(diǎn)個(gè)數(shù);
(Ⅱ)若函數(shù)在上為增函數(shù),求整數(shù)的最大值.
(可能要用的數(shù)據(jù): , , ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù).
(Ⅰ)求的最小值及取得最小值時(shí)的取值范圍;
(Ⅱ)若集合,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知橢圓C: +y2=1,以橢圓的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0).設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求 的最小值;
(2)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:丨OR丨丨OS丨為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)初一年級(jí)500名學(xué)生參加某次數(shù)學(xué)測評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)從總體的500名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(2)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出由下列各組命題構(gòu)成的“p或q”“p且q”以及“非p”形式的命題,并判斷它們的真假:
(1)p:3是素?cái)?shù),q:3是偶數(shù);
(2)p:x=-2是方程x2+x-2=0的解,q:x=1是方程x2+x-2=0的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (x∈R),e是自然對(duì)數(shù)的底.
(1)計(jì)算f(ln2)的值;
(2)證明函數(shù)f(x)是奇函數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com