定義運算
.
ab
cd
.
=ad-bc
,則符合條件
.
21
zzi
.
=i
的復數(shù)z的虛部為(  )
分析:
.
ab
cd
.
=ad-bc
,
.
21
zzi
.
=i
,知2zi-z=i,故z=
i
2i-1
,利用復數(shù)的乘除運算法則能夠求出符合條件
.
21
zzi
.
=i
的復數(shù)z的虛部.
解答:解:∵
.
ab
cd
.
=ad-bc
,
.
21
zzi
.
=i
,
∴2zi-z=i,
∴z=
i
2i-1
=
i(-1-2i)
5

=
-i+2
5
=
2
5
-
1
5
i
,
.
21
zzi
.
=i
的復數(shù)z的虛部為-
1
5

故選B.
點評:本題考查復數(shù)的代數(shù)形式的乘除運算,是基礎(chǔ)題.解題時要認真審題,仔細解答,注意行列式的展開法則的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義運算
.
ab
cd
.
=ad-bc,若復數(shù)x=
2-i
3+i
,y=
.
4i3-xi
1+ix+i
.
,則y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算
.
ab
cd
.
=ad-bc
,則符合條件
.
x-11-2y
1+2yx-1
.
=0的點P (x,y)的軌跡方程為( 。
A、(x-1)2+4y2=1
B、(x-1)2-4y2=1
C、(x-1)2+y2=1
D、(x-1)2-y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算
.
ab
cd
.
=ad-bc,則函數(shù)f(x)=
.
3
3
sinx
1cosx
.
圖象的一條對稱軸方程是(  )
A、x=
6
B、x=
3
C、x=
π
3
D、x=
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算
ab
cd
e
f
=
ae+bf
ce+df
,如
12
03
4
5
=
14
15
,已知α+β=
π
2
,α-β=π,則
sinαcosα
cosαsinα
cosβ
sinβ
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算
.
ab
cd
.
=ad-bc,則對復數(shù)z=x+yi(x,y∈R)符合條件
.
z1
z2i
.
=3+2i的復數(shù)z等于
 

查看答案和解析>>

同步練習冊答案