【題目】如圖,在梯形中,,的中點(diǎn),的交點(diǎn),將沿翻折到圖的位置,得到四棱錐

1)求證:;

2)當(dāng),時(shí),求到平面的距離.

【答案】1)見(jiàn)解析;(2.

【解析】

1)在圖中,證明四邊形為菱形,可得出,由翻折的性質(zhì)得知在圖中,,,利用直線與平面垂直的判定定理證明出平面,可得出,并證明出四邊形為平行四邊形,可得出,由此得出;

2)解法一:由(1)可知平面,結(jié)合,可得出平面,由此得出點(diǎn)到平面的距離為的長(zhǎng)度,求出即可;

解法二:證明出平面,可計(jì)算出三棱錐的體積,并設(shè)點(diǎn)與面的距離為,并計(jì)算出的面積,利用三棱錐的體積和三棱錐的體積相等計(jì)算出的值,由此可得出點(diǎn)到平面的距離.

1)圖中,在四邊形中,,

四邊形為平行四邊形.

,四邊形為菱形,,,

在圖中,,,又,

平面,.

又在四邊形中,,

四邊形為平行四邊形,;

2)法一:由(1)可知,且,平面

的長(zhǎng)度即為點(diǎn)到平面的距離,

由(1)已證四邊形為平行四邊形,所以,

因此,點(diǎn)到平面的距離為;

解法二:連接,,,

,,.

,平面

設(shè)點(diǎn)與面的距離為,,

,,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面 平面,, .

(1)證明

(2)設(shè)點(diǎn)在線段上,且,若的面積為,求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)點(diǎn)的直線交拋物線于、兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),點(diǎn).

(1)求的值;

(2)若,,的面積成等比數(shù)列,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次循環(huán)賽中有2n+1支參賽隊(duì),其中每隊(duì)與其他隊(duì)均只進(jìn)行一場(chǎng)比賽,且比賽結(jié)果中沒(méi)有平局。若三支參賽隊(duì)A、B、C滿足:A擊敗B,B擊敗C,C擊敗A,則稱(chēng)它們形成一個(gè)“環(huán)形三元組”。求:

(1)環(huán)形三元組的最小可能數(shù)目;

(2)環(huán)形三元組的最大可能數(shù)目。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、為兩個(gè)不重合的平面,則的充要條件是(

A.內(nèi)有無(wú)數(shù)條直線與平行B.、垂直于同一平面

C.、平行于同一條直線D.內(nèi)有兩條相交直線與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,且滿足

(1)求橢圓的方程;

(2)設(shè)傾斜角為的直線交于,兩點(diǎn),記的面積為,求取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy2=4x與橢圓E1ab0)有一個(gè)公共焦點(diǎn)F.設(shè)拋物線C與橢圓E在第一象限的交點(diǎn)為M.滿足|MF|.

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)P1,)的直線交拋物線CA、B兩點(diǎn),直線PO交橢圓E于另一點(diǎn)Q.PAB的中點(diǎn),求△QAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中 為自然對(duì)數(shù)的底數(shù))

(Ⅰ)若函數(shù)無(wú)極值,求實(shí)數(shù)的取值范圍;

(Ⅱ)當(dāng)時(shí),證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案