已知a∈[-1,1],不等式x2+(a-4)x+4-2a>0恒成立,則x的取值范圍為(  )
A.(-∞,2)∪(3,+∞)B.(-∞,1)∪(2,+∞)
C.(-∞,1)∪(3,+∞)D.(1,3)
C
把原不等式的左端看成關于a的一次函數(shù),記f(a)=(x-2)a+x2-4x+4,則f(a)>0對于任意的a∈[-1,1]恒成立,易知只需f(-1)=x2-5x+6>0、伲襢(1)=x2-3x+2>0、诩纯,聯(lián)立①②解得x<1或x>3.故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點;
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;
(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若實數(shù)a,b,c滿足2a=-a,log
1
2
b=b,log2c=(
1
2
c( 。
A.a(chǎn)<b<cB.a(chǎn)<c<bC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=x2+ax-1在區(qū)間[0,3]上有最小值-2,則實數(shù)a的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若不等式的解集為{x| x<-或x>},則的值為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若關于的不等式的解集為,則關于的不等式的解集為             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知不等式的解集為,則         ,且的值為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若不等式恒成立,則的取值范圍是       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則實數(shù)的取值范圍為(   ) 
A.B.C.D.

查看答案和解析>>

同步練習冊答案