如圖,
,
,…,
,…是曲線
上的點(diǎn),
,
,…,
,…是
軸正半軸上的點(diǎn),且
,
,…,
,… 均為斜邊在
軸上的等腰直角三角形(
為坐標(biāo)原點(diǎn)).
(1)寫出
、
和
之間的等量關(guān)系,以及
、
和
之間的等量關(guān)系;
(2)求證:
(
);
(3)設(shè)
,對(duì)所有
,
恒成立,求實(shí)數(shù)
的取值范圍.
第一問(wèn)利用有
,
得到
第二問(wèn)證明:①當(dāng)
時(shí),可求得
,命題成立;②假設(shè)當(dāng)
時(shí),命題成立,即有
則當(dāng)
時(shí),由歸納假設(shè)及
,
得
第三問(wèn)
.………………………2分
因?yàn)楹瘮?shù)
在區(qū)間
上單調(diào)遞增,所以當(dāng)
時(shí),
最大為
,即
解:(1)依題意,有
,
,………………4分
(2)證明:①當(dāng)
時(shí),可求得
,命題成立; ……………2分
②假設(shè)當(dāng)
時(shí),命題成立,即有
,……………………1分
則當(dāng)
時(shí),由歸納假設(shè)及
,
得
.
即
解得
(
不合題意,舍去)
即當(dāng)
時(shí),命題成立. …………………………………………4分
綜上所述,對(duì)所有
,
. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)
在區(qū)間
上單調(diào)遞增,所以當(dāng)
時(shí),
最大為
,即
.……………2分
由題意,有
. 所以,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知等差數(shù)列
的首項(xiàng)
及公差
都是整數(shù),前
項(xiàng)和為
,若
,設(shè)
的結(jié)果為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知數(shù)列
是等差數(shù)列前
項(xiàng)和
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和
;
(3)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本大題6分)已知等差數(shù)列
滿足:
;
(1).求
;(2).令
,求數(shù)列
的前n項(xiàng)積
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
觀察下列等式:
由此猜測(cè)第
個(gè)等式為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知函數(shù)
,項(xiàng)數(shù)為29的等差數(shù)列
滿足
,且公差
,若
,
時(shí),
的值 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知等差數(shù)列{
}的前n項(xiàng)和為
,若
,則
= ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
查看答案和解析>>