【題目】已知橢圓的左、右焦點(diǎn)分別為,圓經(jīng)過(guò)橢圓的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)在橢圓上,且,.

(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);

(Ⅱ)過(guò)點(diǎn)的直線(xiàn)與圓相交于兩點(diǎn),過(guò)點(diǎn)垂直的直線(xiàn)與橢圓相交于另一點(diǎn),求的面積的取值范圍.

【答案】(Ⅰ)橢圓的方程為, 點(diǎn)P的坐標(biāo)為.(Ⅱ).

【解析】分析:I)由題意計(jì)算可得, , 則橢圓的方程為, 結(jié)合幾何性質(zhì)可得點(diǎn)P的坐標(biāo)為.

II)由題意可知直線(xiàn)l2的斜率存在,設(shè)l2的方程為,與橢圓方程聯(lián)立可得, 由弦長(zhǎng)公式可得結(jié)合幾何關(guān)系和勾股定理可得, 則面積函數(shù)換元求解函數(shù)的值域可得△ABC的面積的取值范圍是

詳解:I)設(shè),

可知圓經(jīng)過(guò)橢圓焦點(diǎn)和上下頂點(diǎn),得,

由題意知,得,

,得,

所以橢圓的方程為,

點(diǎn)P的坐標(biāo)為.

II)由過(guò)點(diǎn)P的直線(xiàn)l2與橢圓相交于兩點(diǎn),知直線(xiàn)l2的斜率存在,

設(shè)l2的方程為,由題意可知,

聯(lián)立橢圓方程,得,

設(shè),則,得,

所以

由直線(xiàn)l1l2垂直,可設(shè)l1的方程為,即

圓心l1的距離,又圓的半徑

所以,

,

,得

,

設(shè),則,,

當(dāng)且僅當(dāng)時(shí),取“=”,

所以△ABC的面積的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù).

1)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍;

2)若有兩個(gè)相異零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著食品安全問(wèn)題逐漸引起人們的重視,有機(jī)、健康的高端綠色蔬菜越來(lái)越受到消費(fèi)者的歡迎,同時(shí)生產(chǎn)—運(yùn)輸—銷(xiāo)售一體化的直銷(xiāo)供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問(wèn)題.

(1)在有機(jī)蔬菜的種植過(guò)程中,有機(jī)肥料使用是必不可少的.根據(jù)統(tǒng)計(jì)某種有機(jī)蔬菜的產(chǎn)量與有機(jī)肥料的用量有關(guān)系,每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)如下表

使用堆漚肥料(千克)

2

4

5

6

8

產(chǎn)量的增加量(百斤)

3

4

4

4

5

依據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程;并根據(jù)所求線(xiàn)性回歸方程,估計(jì)如果每個(gè)有機(jī)蔬菜大棚使用堆漚肥料10千克,則每個(gè)有機(jī)蔬菜大棚產(chǎn)量增加量是多少百斤?

(2)某大棚蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱(chēng)重并保鮮分裝,以每份10元的價(jià)格銷(xiāo)售到生鮮超市.“樂(lè)購(gòu)”生鮮超市以每份15元的價(jià)格賣(mài)給顧客,如果當(dāng)天前8小時(shí)賣(mài)不完,則超市通過(guò)促銷(xiāo)以每份5元的價(jià)格賣(mài)給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷(xiāo)售量(單位:份),制成如下表格(注:,且);

前8小時(shí)內(nèi)的銷(xiāo)售量(單位:份)

15

16

17

18

19

20

21

頻數(shù)

10

x

16

6

15

13

y

若以100天記錄的頻率作為每日前8小時(shí)銷(xiāo)售量發(fā)生的概率,該生鮮超市當(dāng)天銷(xiāo)售有機(jī)蔬菜利潤(rùn)的期望值為決策依據(jù),當(dāng)購(gòu)進(jìn)17份比購(gòu)進(jìn)18份的利潤(rùn)的期望值大時(shí),求的取值范圍.

附:回歸直線(xiàn)方程為,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)的圖象向右平移一個(gè)單位,所得圖象與函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng);已知偶函數(shù)滿(mǎn)足,當(dāng)時(shí),;若函數(shù)有五個(gè)零點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)“挑戰(zhàn)主持人”節(jié)目的挑戰(zhàn)者闖第一關(guān)需要回答三個(gè)問(wèn)題,其中前兩個(gè)問(wèn)題回答正確各得分,回答不正確得分,第三個(gè)問(wèn)題回答正確得分,回答不正確得分.如果一個(gè)挑戰(zhàn)者回答前兩個(gè)問(wèn)題正確的概率都是,回答第三個(gè)問(wèn)題正確的概率為,且各題回答正確與否相互之間沒(méi)有影響.若這位挑戰(zhàn)者回答這三個(gè)問(wèn)題總分不低于分就算闖關(guān)成功.

(Ⅰ)求至少回答對(duì)一個(gè)問(wèn)題的概率;

(Ⅱ)求這位挑戰(zhàn)者回答這三個(gè)問(wèn)題的總得分X的分布列;

(Ⅲ)求這位挑戰(zhàn)者闖關(guān)成功的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位,再將所得圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到的圖象,則的可能取值為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線(xiàn)圖.

為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線(xiàn)性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②

(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;

(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】偶函數(shù)定義域?yàn)?/span>,其導(dǎo)函數(shù)是,當(dāng)時(shí),有,則關(guān)于的不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案