【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下上至處有兩種路徑一種是從沿直線步行到,另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)乙從乘纜車到,處停留再?gòu)?/span>勻速步行到假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為,山路長(zhǎng)為1260經(jīng)測(cè)量,

1求索道的長(zhǎng);

2問(wèn):乙出發(fā)多少,乙在纜車上與甲的距離最短?

3為使兩位游客在處互相等待的時(shí)間不超過(guò)乙步行的速度應(yīng)控制在什么范圍內(nèi)

【答案】12當(dāng)時(shí),甲、乙兩游客距離最短;3.

【解析】

試題分析:1根據(jù)兩角和公式求得,再根據(jù)正弦定理即可求得的長(zhǎng);2假設(shè)乙出發(fā)后,甲、乙兩游客距離為,分別表示出甲、乙二人行走的距離,根據(jù)余弦定理建立的二次函數(shù)關(guān)系,求出使得甲乙二人距離最短時(shí)的值;3根據(jù)正弦定理求得,乙從出發(fā)時(shí),甲已走了

,還需走才能到達(dá),設(shè)乙步行的速度為,由題意得,解不等式即可求得乙步行速度范圍.

試題解析:1中,因?yàn)?/span>,,

所以,,

從而

由正弦定理,得

2假設(shè)乙出發(fā)后,甲、乙兩游客距離為,此時(shí),甲行走了,乙距離,

所以由余弦定理得,

由于,即

故當(dāng)時(shí),甲、乙兩游客距離最短.

3由正弦定理,

乙從出發(fā)時(shí),甲已走了,還需走710才能到達(dá)

設(shè)乙步行的速度為,由題意得,解得

所以為使兩位游客在處互相等待的時(shí)間不超過(guò),乙步行的速度應(yīng)控制在單位:范圍內(nèi).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)記的極小值為,求的最大值;

2)若對(duì)任意實(shí)數(shù)恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(1)證明: ;

(2)根據(jù)(1)證明: .

(B)已知函數(shù) .

(1)用分析法證明: ;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)

(1) 判別函數(shù)f(x)的奇偶性;

(2) 判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明你的判斷正確;

(3) 求關(guān)于x的不等式f(1x2)f(2x2)0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用 (單位:萬(wàn)元)與隔熱層厚度 (單位: )滿足關(guān)系,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

(1)求的值及的表達(dá)式;

(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為矩形, 平面, .

(1)求證:

(2)若直線平面,試判斷直線與平面的位置關(guān)系,并說(shuō)明理由;

(3)若 ,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如下表所示:

文藝節(jié)目

新聞節(jié)目

總計(jì)

20至40歲

40

18

58

大于40歲

15

27

42

總計(jì)

55

45

100

(1)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機(jī)抽取5名,大于40歲的觀眾應(yīng)該抽取幾名?

(2)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為上一點(diǎn).

(1)求橢圓的方程;

(2)設(shè)分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),平行于的直線于異于的兩點(diǎn).點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組、有關(guān)數(shù)據(jù)見(jiàn)下表(單位:人)

(1)求;

(2)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來(lái)自高校的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案