【題目】16屆亞運(yùn)會(huì)在中國(guó)廣州進(jìn)行,為了搞好接待工作,組委會(huì)招幕了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛(ài)運(yùn)動(dòng),其余人不喜愛(ài)運(yùn)動(dòng).

1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:

喜愛(ài)運(yùn)動(dòng)

不喜愛(ài)運(yùn)動(dòng)

總計(jì)

總計(jì)

2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān)?

附:

【答案】1)詳見(jiàn)解析;(2)能在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān).

【解析】

1)根據(jù)男女志愿者人數(shù)即可補(bǔ)充完成列聯(lián)表;

(2)根據(jù)公式計(jì)算可得,由此可得結(jié)論.

1)根據(jù)題意填寫(xiě)列聯(lián)表如下:

喜愛(ài)運(yùn)動(dòng)

不喜愛(ài)運(yùn)動(dòng)

總計(jì)

總計(jì)

2)根據(jù)表中數(shù)據(jù)可得:

能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,,是邊長(zhǎng)為2的正三角形,平面⊥平面,的中點(diǎn),的中點(diǎn).

1)求證:平面

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)記,試判斷在區(qū)間內(nèi)零點(diǎn)個(gè)數(shù)并說(shuō)明理由;

2)記(1)中的內(nèi)的零點(diǎn)為,,若有兩個(gè)不等實(shí)根,判斷的大小,并給出對(duì)應(yīng)的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的離心率為,且焦點(diǎn)到漸近線的距離為

1)求雙曲線的標(biāo)準(zhǔn)方程;

2)若以為斜率的直線與雙曲線相交于兩個(gè)不同的點(diǎn),,且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x2+x10的解可視為函數(shù)yx+的圖象與函數(shù)y的圖象交點(diǎn)的橫坐標(biāo),若x4+ax40的各個(gè)實(shí)根x1,x2,,xk(k≤4)所對(duì)應(yīng)的點(diǎn)(xi ,)i1,2,…,k)均在直線yx的同側(cè),則實(shí)數(shù)a的取值范圍是      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長(zhǎng),r為三角形內(nèi)切圓半徑,利用類(lèi)比推理,可以得出四面體的體積為 ( )

A. V=abc B. V=Sh

C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個(gè)面的面積,r為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是r)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,棱的中點(diǎn)為,若光線從點(diǎn)出發(fā),依次經(jīng)三個(gè)側(cè)面,,反射后,落到側(cè)面(不包括邊界),則入射光線與側(cè)面所成角的正切值的范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,BC的對(duì)邊分別為a,bc,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f'(x)f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時(shí),0≤f(x)≤1;當(dāng)x∈(0,π)x≠時(shí), ,則函數(shù)y=f(x)-|sinx|在區(qū)間上的零點(diǎn)個(gè)數(shù)為( )

A. 4 B. 6 C. 7 D. 8

查看答案和解析>>

同步練習(xí)冊(cè)答案