對于在區(qū)間 [ m,n ] 上有意義的兩個(gè)函數(shù),如果對任意,均有,則稱在 [ m,n ] 上是友好的,否則稱在 [ m,n ]是不友好的.現(xiàn)有兩個(gè)函數(shù)(a > 0且),給定區(qū)間
(1)若在給定區(qū)間上都有意義,求a的取值范圍;
(2)討論在給定區(qū)間上是否友好.

(1) ;(2) 當(dāng)時(shí),上是友好的,當(dāng)時(shí),上是不友好的

解析試題分析:(1)函數(shù)f(x)與g(x)在區(qū)間[a+2,a+3]上有意義,必須滿足(2)假設(shè)存在實(shí)數(shù)a,使得函數(shù)f(x)與g(x)在區(qū)間[a+2,a+3]上是“友好”的,
則|f(x)-g(x)|=|loga(x2-4ax+3a2)|⇒|loga(x2-4ax+3a2)|≤1即-1≤loga(x2-4ax+3a2)≤1(*),因?yàn)閍∈(0,1)⇒2a∈(0,2),而[a+2,a+3]在x=2a的右側(cè),
所以函數(shù)g(x)=loga(x2-4ax+3a2)在區(qū)間[a+2,a+3]上為減函數(shù),從而,于是不等式(*)成立的充要條件是,因此,當(dāng)時(shí),上是友好的; 當(dāng)時(shí),上是不友好的
考點(diǎn):本題考查了函數(shù)的定義域及單調(diào)性
點(diǎn)評:此類問題要求學(xué)生熟練掌握函數(shù)單調(diào)性的判斷與證明,以及新定義的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)對于任意的滿足.
(1)求的值;
(2)求證:為偶函數(shù);
(3)若上是增函數(shù),解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對任意的實(shí)數(shù)x∈,都有f(x)-2mx≤1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ) 若直線y=kx+1與f (x)的反函數(shù)的圖像相切, 求實(shí)數(shù)k的值;
(Ⅱ) 設(shè)x>0, 討論曲線y=f (x) 與曲線 公共點(diǎn)的個(gè)數(shù).
(Ⅲ) 設(shè)a<b, 比較的大小, 并說明理由.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(為實(shí)數(shù),,),
(Ⅰ)若,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ec/24/ec824321244b3975c8c90c0df6fc4502.png" style="vertical-align:middle;" />,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè),,且函數(shù)為偶函數(shù),判斷是否大于?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=lg(ax-bx)(a>1>b>0).
(1)求y=f(x)的定義域;
(2)在函數(shù)y=f(x)的圖象上是否存在不同的兩點(diǎn),使得過這兩點(diǎn)的直線平行于x軸;
(3)當(dāng)a,b滿足什么條件時(shí),f(x)在(1,+∞)上恒取正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某人2002年底花100萬元買了一套住房,其中首付30萬元,70萬元采用商業(yè)貸款.貸款的月利率為5‰,按復(fù)利計(jì)算,每月等額還貸一次,10年還清,并從貸款后的次月開始還貸.
(1)這個(gè)人每月應(yīng)還貸多少元?
(2)為了抑制高房價(jià),國家出臺“國五條”,要求賣房時(shí)按照差額的20%繳稅.如果這個(gè)人現(xiàn)在將住房150萬元賣出,并且差額稅由賣房人承擔(dān),問:賣房人將獲利約多少元?(參考數(shù)據(jù):(1+0.005)120≈1.8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) 
(Ⅰ)若在點(diǎn)處的切線與軸和直線圍成的三角形面積等于,求的值;
(Ⅱ)當(dāng)時(shí),討論的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案