若拋物線y2=2px的焦點與橢圓=1的右焦點重合,則p=________.

 

4

【解析】橢圓=1的右焦點(2,0)是拋物線y2=2px的焦點,所以=2,p=4.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第4課時練習(xí)卷(解析版) 題型:解答題

已知圓C:x2+y2=9,點A(-5,0),直線l:x-2y=0.

(1)求與圓C相切,且與直線l垂直的直線方程;

(2)在直線OA上(O為坐標(biāo)原點),存在定點B(不同于點A),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點B的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第3課時練習(xí)卷(解析版) 題型:解答題

求經(jīng)過直線2x+3y+1=0和x-3y+4=0的交點,且垂直于直線3x+4y-7=0的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第11課時練習(xí)卷(解析版) 題型:填空題

已知拋物線y2=2px(p≠0)上存在關(guān)于直線x+y=1對稱的相異兩點,則實數(shù)p的取值范圍為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第11課時練習(xí)卷(解析版) 題型:解答題

如圖,橢圓C0:=1(a>b>0,a、b為常數(shù)),動圓C1:x2+y2=,b<t1<a.點A1、A2分別為C0的左、右頂點,C1與C0相交于A、B、C、D四點.

(1)求直線AA1與直線A2B交點M的軌跡方程;

(2)設(shè)動圓C2:x2+y2=與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第10課時練習(xí)卷(解析版) 題型:解答題

如圖,設(shè)E:=1(a>b>0)的焦點為F1與F2,且P∈E,∠F1PF2=2θ.求證:△PF1F2的面積S=b2tanθ.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第10課時練習(xí)卷(解析版) 題型:解答題

已知雙曲線=1的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A、B兩點,F(xiàn)1為左焦點.

(1)求雙曲線的方程;

(2)若△F1AB的面積等于6,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西工大附中高三上學(xué)期第四次適應(yīng)性訓(xùn)練理數(shù)學(xué)卷(解析版) 題型:填空題

已知圓O的半徑為3,從圓O外一點A引切線AD和割線ABC,圓心O到AC的距離為2,AB=3,則切線AD的長為__________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西安鐵一中國際合作學(xué)校高三下第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列的前項和滿足.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.

 

查看答案和解析>>

同步練習(xí)冊答案