A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧于點(diǎn)E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線C1=x2+2y2=1在矩陣M=[]的作用下變換為曲線C2,求C2的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線C1(θ為參數(shù))上一點(diǎn),求它到直線C2(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設(shè)n∈N*,求證:++L+

【答案】分析:A.先連OC.由∠ABC=60°,∠BAC=40°,得出∠ACB=80°從而的度數(shù)均為80°.故有∠EOC=80°+80°=160°最后得出:∠OEC的大小即可;
B.設(shè)P(x,y)為曲線C2上任意一點(diǎn),P′(x′,y′)為曲線x2+4xy+2y2=1上與P對(duì)應(yīng)的點(diǎn),根據(jù)矩陣變換得出結(jié)合P′是曲線C1上的點(diǎn),求得C2的方程即可;
C.將曲線C1化成普通方程(x-1)2+y2=1,圓心是(1,0),直線C2化成普通方程最后求出曲線C1上點(diǎn)到直線的距離即可;
D.由柯西不等式,得:(++…+2≤(1+1+…+1)(Cn1+Cn2+…Cn2+)=n(2n-1)即可得到證明.
解答:A.選修4-1:幾何證明選講
解:連OC.∵∠ABC=60°,∠BAC=40°,∴∠ACB=80°.(4分)
∵OE⊥AB,∴E為的中點(diǎn),∴的度數(shù)均為80°.
∴∠EOC=80°+80°=160°.(8分)
∴∠OEC=10°.(10分)
B.選修4-2:矩陣與變換
解:設(shè)P(x,y)為曲線C2上任意一點(diǎn),P′(x′,y′)為曲線C2上與P對(duì)應(yīng)的點(diǎn),
(5分)
∵P′是曲線C1上的點(diǎn),∴C2的方程(x-2y)2+y2=1.(10分)
C.選修4-4:坐標(biāo)系與參數(shù)方程
解:將曲線C1化成普通方程(x-1)2+y2=1,圓心是(1,0),
直線C2化成普通方程是y-2=0,則圓心到直線的距離為2.(5分)
∴曲線C1上點(diǎn)到直線的距離為1,該點(diǎn)為(1,1).(10分)
D.選修4-5:不等式選講
證明:由柯西不等式,得:
++…+2≤(1+1+…+1)(Cn1+Cn2+…Cn2+)=n(2n-1)
++…+
點(diǎn)評(píng):本題考查柯西不等式,點(diǎn)到直線的距離公式、弦長(zhǎng)公式的應(yīng)用,幾種特殊的矩陣變換,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A(選修4-1:幾何證明選講)
如圖,AB是⊙O的直徑,C,F(xiàn)是⊙O上的兩點(diǎn),OC⊥AB,過(guò)點(diǎn)F作⊙O的切線FD交AB的延長(zhǎng)線于點(diǎn)D,連接CF交AB于點(diǎn)E.
求證:DE2=DB•DA.
B(選修4-2:矩陣與變換)
求矩陣
21
12
的特征值及對(duì)應(yīng)的特征向量.
C(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C的極坐標(biāo)方程是ρ=2sinθ,直線l的參數(shù)方程是
x=-
3
5
t+2
y=
4
5
t
(t為參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與x軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求MN的最大值.
D(選修4-5:不等式選講)
已知m>0,a,b∈R,求證:(
a+mb
1+m
)2
a2+mb2
1+m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講
如圖,PA切⊙O于點(diǎn)A,D為PA的中點(diǎn),過(guò)點(diǎn)D引割線交⊙O于B、C兩點(diǎn).求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
設(shè)M=
.
10
02
.
,N=
.
1
2
0
01
.
,試求曲線y=sinx在矩陣MN變換下的曲線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
D.選修4-5:不等式選講
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A)選修4-1:幾何證明選講
如圖,⊙O的割線PAB交⊙O于A,B兩點(diǎn),割線PCD經(jīng)過(guò)圓心交⊙O于C,D兩點(diǎn),若PA=2,AB=4,PO=5,則⊙O的半徑長(zhǎng)為
13
13


(B)選修4-4:坐標(biāo)系與參數(shù)方程
參數(shù)方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中當(dāng)t為參數(shù)時(shí),化為普通方程為
x2-y2=1(x≥1)
x2-y2=1(x≥1)

(C)選修4-5:不等式選講
不等式|2-x|+|x+1|≤a對(duì)于任意x∈[0,5]恒成立的實(shí)數(shù)a的集合為
{a|a≥9}
{a|a≥9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講如圖,AD是∠BAC的平分線,⊙O過(guò)點(diǎn)A且與BC邊相切于點(diǎn)D,與AB,AC分別交于E,F(xiàn),求證:EF∥BC.
B.選修4-2:矩陣與變換
已知a,b∈R,若矩陣M=[
-1
b
a
3
]所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.
C.選修4-4:坐標(biāo)系與參數(shù)方程將參數(shù)方程
x=2(t+
1
t
)
y=4(t-
1
t
)
t為參數(shù))化為普通方程.
D.選修4-5:已知a,b是正數(shù),求證(a+
1
b
)(2b+
1
2a
)≥92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從A,B,C,D四個(gè)中選做2個(gè)A.選修4-1(幾何證明選講)
如圖,AB是半圓的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD切半圓于點(diǎn)D,CD=2,DE⊥AB,垂足為E,且E是OB的中點(diǎn),求BC的長(zhǎng).
B.選修4-2(矩陣與變換)
將曲線xy=1繞坐標(biāo)原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)45°,求所得曲線的方程.
C.選修4-4(坐標(biāo)系與參數(shù)方程)
求直線
x=1+2t
y=1-2t
(t為參數(shù))被圓
x=3cosa
y=3sina
(α為參數(shù))截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知x,y均為正數(shù),且x>y,求證:2x+
1
x2-2xy+y2
≥2y+3

查看答案和解析>>

同步練習(xí)冊(cè)答案