設函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數(shù)f(x)的極大值;
(2)若x=1是函數(shù)f(x)的一個極值點.
①試用a表示b;
②設a>0,函數(shù)g(x)=(a2+14)ex+4.若?ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.
(1)(2)①b=-3-2a②1-<a<1+.
【解析】(1)∵f′(x)=(2x+a)ex+(x2+ax+b)ex=[x2+(2+a)x+(a+b)]ex,
當a=2,b=-2時,f(x)=(x2+2x-2)ex,
則f′(x)=(x2+4x)ex,
令f′(x)=0得(x2+4x)ex=0,
∵ex≠0,∴x2+4x=0,解得x=-4或x=0,
列表如下:
x | (-∞,-4) | -4 | (-4,0) | 0 | (0,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ? | 極大值 | ? | 極小值 | ? |
∴當x=-4時,函數(shù)f(x)取極大值,f(x)極大值=.
(2)①由(1)知f′(x)=[x2+(2+a)x+(a+b)]ex.
∵x=1是函數(shù)f(x)的一個極值點,∴f′(1)=0,
即e[1+(2+a)+(a+b)]=0,解得b=-3-2a.
②由①知f′(x)=ex[x2+(2+a)x+(-3-a)]=ex(x-1)[x+(3+a)],
當a>0時,f(x)在區(qū)間(0,1)上的單調(diào)遞減,在區(qū)間(1,4)上單調(diào)遞增,
∴函數(shù)f(x)在區(qū)間[0,4]上的最小值為f(1)=-(a+2)e.
∵f(0)=b=-3-2a<0,f(4)=(2a+13)e4>0,
∴函數(shù)f(x)在區(qū)間[0,4]上的值域是[f(1),f(4)],
即[-(a+2)e,(2a+13)e4].
又g(x)=(a2+14)ex+4在區(qū)間[0,4]上是增函數(shù),且它在區(qū)間[0,4]上的值域是[(a2+14)e4,(a2+14)e8],
∴(a2+14)e4-(2a+13)e4=(a2-2a+1)e4=(a-1)2e4≥0,
∴存在ξ1、ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立只須(a2+14)e4-(2a+13)e4<1?(a-1)2e4<1(a-1)2<?1-<a<1+.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第2課時練習卷(解析版) 題型:填空題
函數(shù)f(x)=的值域為____________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第13課時練習卷(解析版) 題型:解答題
某公司為一家制冷設備廠設計生產(chǎn)某種型號的長方形薄板,其周長為4m.這種薄板須沿其對角線折疊后使用.如圖所示,ABCD(AB>AD)為長方形薄板,沿AC折疊后AB′交DC于點P.當△ADP的面積最大時最節(jié)能,凹多邊形ACB′PD的面積最大時制冷效果最好.
(1)設AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
(2)若要求最節(jié)能,應怎樣設計薄板的長和寬?
(3)若要求制冷效果最好,應怎樣設計薄板的長和寬?
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第12課時練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=(ax2+x)ex,其中e是自然數(shù)的底數(shù),a∈R.
(1)當a<0時,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是單調(diào)函數(shù),求a的取值范圍;
(3)當a=0時,求整數(shù)k的所有值,使方程f(x)=x+2在[k,k+1]上有解.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第12課時練習卷(解析版) 題型:填空題
若存在正數(shù)x使2x(x-a)<1成立,則a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第12課時練習卷(解析版) 題型:填空題
已知函數(shù)f(x)=-x2+blnx在區(qū)間[,+∞)上是減函數(shù),則b的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第11課時練習卷(解析版) 題型:填空題
已知函數(shù)f(x)=ex-f(0)x+x2,則f′(1)=____.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第10課時練習卷(解析版) 題型:填空題
若關于x的方程=kx2有四個不同的實數(shù)根,則實數(shù)k的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第三章第8課時練習卷(解析版) 題型:解答題
如圖,A、B是海面上位于東西方向相距5(3+)海里的兩個觀測點,現(xiàn)位于A點北偏東45°、B點北偏西60°的D點有一艘輪船發(fā)出求救信號,位于B點南偏西60°且與B點相距20海里的C點的救援船立即前往營救,其航行速度為30海里/小時,該救援船達到D點需要多長時間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com