分析 (Ⅰ)運(yùn)用正弦定理結(jié)合三角形的內(nèi)角和定理.即可得到A.
(Ⅱ)根據(jù)△ABC邊AC上的高h(yuǎn)=b,求出tanA和tanC,帶入化簡(jiǎn)可得答案.
解答 解:(Ⅰ)由$\frac{sinA}{sinC}=\frac{asinB}{a-bcosC}$.
根據(jù)正弦定理,可得:$\frac{a}{c}=\frac{asinB}{a-bcosC}$,
即a-bcosC=csinB,
得:sinA-sinBcosC=sinCsinB.
B+C+A=π
∴sinA=sin(B+C)
∴sinBcosC+sinCcosB-sinBcosC=sinCsinB.
可得:sinCcosB=sinCsinB.
∵0<C<π,sinC≠0.
∴cosB=sinB
∵0<B<π.
∴B=$\frac{π}{4}$.
(Ⅱ)由題意,過(guò)B點(diǎn)作AC的高h(yuǎn)=DB=b.設(shè)AD=m,DC=n,n+m=b.
則tanA=$\frac{m}$,tanC=$\frac{n}$,
可得$\frac{sinB}{tanA}+\frac{sinB}{tanC}$=sinB($\frac{m}+\frac{n}$)=sinB=$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查三角形的正弦定理和內(nèi)角和定理的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2017,+∞) | B. | (-∞,0)∪(2017,+∞) | C. | (0,+∞) | D. | (-∞,0)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 3 | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,2] | B. | [2,+∞) | C. | [0,+∞) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com