P點(diǎn)在橢圓上運(yùn)動(dòng),Q,R分別在兩圓上運(yùn)動(dòng),則|PQ|+|PR|的最大值為          
解:∵橢圓中,c2=4-3=1,
∴橢圓兩焦點(diǎn)F1(-1,0),F(xiàn)2(1,0)恰為兩圓(和(的圓心,e= ,準(zhǔn)線x=
過(guò)P點(diǎn)作x軸平行線,分別交兩準(zhǔn)線于A,B兩點(diǎn),
連接PF1,PF2,并延長(zhǎng),分別交兩圓于Q‘,R’,
則|PQ|+|PR|≤|PQ‘|+|PR’|
=|PF1|+1+|PF2|+1
=e|PA|+e|PB|+2
=e|AB|+2
=1 2 ×8+2
=6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.已知橢圓的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),Q是橢圓外的動(dòng)點(diǎn),滿足點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足

(Ⅰ)設(shè)為點(diǎn)P的橫坐標(biāo),證明
(Ⅱ)求點(diǎn)T的軌跡C的方程;
(Ⅲ)試問(wèn):在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,使△F1M的面積S=若存在,求∠F1MF2的正切值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知圓方程為:.
(Ⅰ)直線過(guò)點(diǎn),且與圓交于兩點(diǎn),若,求直線的方程;
(Ⅱ)過(guò)圓上一動(dòng)點(diǎn)作平行于軸的直線,設(shè)軸的交點(diǎn)為,若向量,求動(dòng)點(diǎn)的軌跡方程,并說(shuō)明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)已知橢圓的離心率,過(guò)兩點(diǎn)的直線到原點(diǎn)的距離是
(1)求橢圓的方程 ; 
(2)已知直線交橢圓于不同的兩點(diǎn)、,且、都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的離心率為,過(guò)右焦點(diǎn)F且斜率為的直線與相交于A、B兩點(diǎn),若,則=
A、1                B、         C、          D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P是橢圓上的動(dòng)點(diǎn),F1,F2分別為其左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),則的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的焦點(diǎn)是
(1)求此橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)點(diǎn)P在此橢圓上,且有的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的長(zhǎng)軸長(zhǎng)是(  )
A.  B.   C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為,以,為焦點(diǎn),離心率為的橢圓的兩條準(zhǔn)線之間的距離為                                                 (   )
A.4 B.6 C.8D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案