兩圓x2+y2+4x-4y=0,x2+y2+2x-12=0相交于A、B兩點(diǎn),則直線AB的方程是
 
考點(diǎn):相交弦所在直線的方程,圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:當(dāng)判斷出兩圓相交時(shí),直接將兩個(gè)圓方程作差,即得兩圓的公共弦所在的直線方程.
解答:解:因?yàn)閮蓤A相交于A,B兩點(diǎn),則A,B兩點(diǎn)的坐標(biāo)坐標(biāo)既滿足第一個(gè)圓的方程,又滿足第二個(gè)圓的方程
將兩個(gè)圓方程作差,得直線AB的方程是:x-2y+6=0,
故答案為:x-2y+6=0.
點(diǎn)評(píng):本題考查相交弦所在的直線的方程,當(dāng)兩圓相交時(shí),將兩個(gè)圓方程作差,即得公共弦所在的直線方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x+5)在區(qū)間[-2,3]是增函數(shù),則f(x2)的遞減區(qū)間是(  )
A、[-2
2
,-
3
]
B、[-2
2
,-
3
]∪[
3
,2
2
]
C、[
3
,2
2
]
D、[-2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<a<1,則a2、2a、log2a的大小關(guān)系是( 。
A、a2>2a>log2aB、2a>a2>log2aC、log2a>a2>2aD、2a>log2a>a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩圓x2+y2-4x-3=0和x2+y2-4y-3=0的交點(diǎn)為A、B,則線段AB的長(zhǎng)度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:x2+y2+6x-4=0與圓C2:x2+y2+6y-28=0.
(1)求兩圓公共弦所在直線的方程;
(2)求經(jīng)過(guò)兩圓交點(diǎn)且圓心在直線x-y-4=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示程序圖,如果輸出i=5,那么在空白矩形框中應(yīng)填入的語(yǔ)句為( 。
A、S=2*iB、S=2*i-1C、S=2*i-2D、S=2*i+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,且S2=l0,S4=36,則過(guò)點(diǎn)P(n,an)和Q(n+2,an+2)(n∈N*)的直線的斜率是(  )
A、-1
B、2
C、4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:?x0∈R,x02+2x0-2=0,則命題p的否定是( 。
A、?x∈R,x2+2x-2≠0B、?x∈R,x2+2x-2>0C、?x0∈R,x02+2x0-2≠0D、?x0∈R,x02+2x0-2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:人教A版(新課標(biāo)) 必修四 題型:

函數(shù),的值域是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案