【題目】設(shè)函數(shù),其中
(1)討論在其定義域上的單調(diào)性;
(2)當(dāng)時(shí),求取得最大值和最小值時(shí)的的值.
【答案】(1)在和內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;(2)所以當(dāng)時(shí),在處取得最小值;當(dāng)時(shí),在和處同時(shí)取得最小只;當(dāng)時(shí),在處取得最小值.
【解析】
試題(1)對(duì)原函數(shù)進(jìn)行求導(dǎo),,令,解得,當(dāng)或時(shí);從而得出,當(dāng)時(shí),.故在和內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.(2)依據(jù)第(1)題,對(duì)進(jìn)行討論,①當(dāng)時(shí),,由(1)知,在上單調(diào)遞增,所以在和處分別取得最小值和最大值.②當(dāng)時(shí),.由(1)知,在上單調(diào)遞增,在上單調(diào)遞減,因此在處取得最大值.又,所以當(dāng)時(shí),在處取得最小值;當(dāng)時(shí),在和處同時(shí)取得最小只;當(dāng)時(shí),在處取得最小值.
(1)的定義域?yàn)?/span>,.令,得,所以.當(dāng)或時(shí);當(dāng)時(shí),.故在和內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.
因?yàn)?/span>,所以.
①當(dāng)時(shí),,由(1)知,在上單調(diào)遞增,所以在和處分別取得最小值和最大值.②當(dāng)時(shí),.由(1)知,在上單調(diào)遞增,在上單調(diào)遞減,因此在處取得最大值.又,所以當(dāng)時(shí),在處取得最小值;當(dāng)時(shí),在和處同時(shí)取得最小只;當(dāng)時(shí),在處取得最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)購(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類(lèi)型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車(chē)在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē),假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事用戶車(chē)盈利10000元,且各種投保類(lèi)型車(chē)的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:
①若該銷(xiāo)售商店內(nèi)有六輛(車(chē)齡已滿三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選兩輛車(chē),求這兩輛車(chē)恰好有一輛為事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象過(guò)點(diǎn).
(1)求的值并求函數(shù)的值域;
(2)若關(guān)于的方程在有實(shí)根,求實(shí)數(shù)的取值范圍;
(3)若函數(shù),則是否存在實(shí)數(shù),對(duì)任意,存在使成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著汽車(chē)消費(fèi)水平的提高,二手車(chē)流通行業(yè)得到迅猛發(fā)展.某汽車(chē)交易市場(chǎng)對(duì)2017 年成交的二手車(chē)的交易前的使用時(shí)間(以下簡(jiǎn)稱“使用時(shí)間”)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖1.在圖1對(duì)使用時(shí)間的分組中,將使用時(shí)間落入各組的頻率視為概率.
(1)記“在2017年成交的二手車(chē)中隨機(jī)選取一輛,該車(chē)的使用年限在”,為事件,試估計(jì)的概率;
(2)根據(jù)該汽車(chē)交易市場(chǎng)的歷史資料,得到散點(diǎn)圖如圖,其中 (單位:年)表示二手車(chē)的使用時(shí)間,(單位:萬(wàn)元)表示相應(yīng)的二手車(chē)的平均交易價(jià)格.
由散點(diǎn)圖判斷,可采用作為二手車(chē)平均交易價(jià)格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中):
①根據(jù)回歸方程類(lèi)型及表中數(shù)據(jù),建立關(guān)于的回歸方程;
②該汽車(chē)交易市場(chǎng)對(duì)使用8年以內(nèi)(含8年)的二手車(chē)收取成交價(jià)格的傭金,對(duì)使用時(shí)間8年以上(不含 8年)的二手車(chē)收取成交價(jià)格的傭金. 在圖1對(duì)使用時(shí)間的分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值.若以2017年的數(shù)據(jù)作為決策依據(jù),計(jì)算該汽車(chē)交易市場(chǎng)對(duì)成交的每輛車(chē)收取的平均傭金.
附注:①對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,;
②參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且離心率為,直線過(guò)點(diǎn),是橢圓上關(guān)于對(duì)稱的兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù),.
(1)當(dāng)時(shí),解關(guān)于的不等式;
(2)若對(duì)任意,都存在,使得不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假定生男孩和生女孩是等可能的,令{一個(gè)家庭中既有男孩又有女孩},{一個(gè)家庭中最多有一個(gè)女孩}.對(duì)下述兩種情形,討論與的獨(dú)立性.
(1)家庭中有兩個(gè)小孩;
(2)家庭中有三個(gè)小孩.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“每天鍛煉一小時(shí),健康工作五十年,幸福生活一輩子.”一科研單位為了解員工愛(ài)好運(yùn)動(dòng)是否與性別有關(guān),從單位隨機(jī)抽取30名員工進(jìn)行了問(wèn)卷調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
愛(ài)好 | 10 | ||
不愛(ài)好 | 8 | ||
合計(jì) | 30 |
已知在這30人中隨機(jī)抽取1人抽到愛(ài)好運(yùn)動(dòng)的員工的概率是.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫(xiě)結(jié)果,不需要寫(xiě)求解過(guò)程),并據(jù)此資料分析能否有把握認(rèn)為愛(ài)好運(yùn)動(dòng)與性別有關(guān)?
(2)若從這30人中的女性員工中隨機(jī)抽取2人參加一活動(dòng),記愛(ài)好運(yùn)動(dòng)的人數(shù)為,求的分布列、數(shù)學(xué)期望.參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024/span> | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com