如圖,在正△ABC中,點(diǎn)D,E分別在邊AC, AB上,且AD=AC,AE=AB,BD,CE相交于點(diǎn)F.

(Ⅰ)求證:A,E,F,D四點(diǎn)共圓;
(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

(1)證明過程詳見解析;(2).

解析試題分析:本題以正三角形為幾何背景,考查四點(diǎn)共圓問題以及相似三角形問題,考查學(xué)生的轉(zhuǎn)化與化歸的能力.第一問,利用已知條件中邊的比例關(guān)系可得出結(jié)論,再利用三角形相似,得出,所以,所以可證四點(diǎn)共圓;第二問,根據(jù)所給正三角形的邊長為2,利用已知的比例關(guān)系,得出各個(gè)小邊的長度,從而得出為正三角形,所以得出,所以所在圓的圓心,而是半徑,即為.
試題解析:(Ⅰ)證明:∵,   ∴,
∵在正中, , ∴,
又∵,, ∴, ∴,
,所以四點(diǎn)共圓.               5分
(Ⅱ)解:如圖,

的中點(diǎn),連接,則,
, ∴,
,, ∴為正三角形,
,即,
所以點(diǎn)外接圓的圓心,且圓的半徑為.
由于四點(diǎn)共圓,即四點(diǎn)共圓,其半徑為.           10分
考點(diǎn):1.四點(diǎn)共圓的證明;2.三角形相似;3.三角形的外接圓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在△ABC中,I為△ABC的內(nèi)心,AI交BC于D,交△ABC外接圓于E.

求證:(1)IE=EC;
(2)IE2=ED·EA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點(diǎn)E,EF垂直BA的延長線于點(diǎn)F.求證:
 
(1)∠AED=∠AFD
(2)AB2BE·BDAE·AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在正△ABC中,點(diǎn)D,E分別在邊AC, AB上,且AD=ACAE=AB,BD,CE相交于點(diǎn)F.

(Ⅰ)求證:A,E,F, D四點(diǎn)共圓;
(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是⊙的直徑,弦的延長線相交于點(diǎn),垂直的延長線于點(diǎn)

求證:(1);
(2)四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為△外接圓的切線,的延長線交直線于點(diǎn),分別為弦與弦上的點(diǎn),且,四點(diǎn)共圓.

(Ⅰ)證明:是△外接圓的直徑;
(Ⅱ)若,求過四點(diǎn)的圓的面積與△外接圓面積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;
(2)PB平分∠ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為圓的直徑,為垂直于的一條弦,垂足為,弦交于點(diǎn).

(Ⅰ)證明:四點(diǎn)共圓;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,

(I)
(II)

查看答案和解析>>

同步練習(xí)冊(cè)答案