【題目】某地出現(xiàn)了蟲害,農(nóng)業(yè)科學(xué)家引入了蟲害指數(shù)數(shù)列,表示第周的蟲害的嚴(yán)重程度,蟲害指數(shù)越大,嚴(yán)重程度越高,為了治理蟲害,需要環(huán)境整治、殺滅害蟲,然而由于人力資源有限,每周只能采取以下兩個策略之一:

策略:環(huán)境整治,蟲害指數(shù)數(shù)列滿足;

策略:殺滅害蟲,蟲害指數(shù)數(shù)列滿足;

當(dāng)某周蟲害指數(shù)小于1時,危機(jī)就在這周解除.

1)設(shè)第一周的蟲害指數(shù),用哪一個策略將使第二周的蟲害嚴(yán)重程度更?

2)設(shè)第一周的蟲害指數(shù),如果每周都采用最優(yōu)的策略,蟲害的危機(jī)最快在第幾周解除?

【答案】1)答案不唯一,具體見解析(2)蟲害最快在第9周解除

【解析】

1)根據(jù)兩種策略,分別計(jì)算第二周蟲害指數(shù),比較它們的大小可得結(jié)論;

(2)由(1)可知,最優(yōu)策略為策略,得,湊配出數(shù)列是等比數(shù)列,求得通項(xiàng),由可解得的最小值.

1)由題意可知,使用策略時,;使用策略時,

,即當(dāng)時,使用策略第二周嚴(yán)重程度更;當(dāng)時,使用兩種策哈第二周嚴(yán)重程度一樣;當(dāng)時,使用策略第二周嚴(yán)重程度更小.

2)由(1)可知,最優(yōu)策略為策略,即,所以數(shù)列是以為首項(xiàng),1.08為公比的等比數(shù)列,所以,即,令,可得,所以蟲害最快在第9周解除.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,點(diǎn)分別是棱上的點(diǎn)滿足

(Ⅰ)證明:;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)教師在甲、乙兩個平行班采用“傳統(tǒng)教學(xué)”和“高效課堂”兩種不同的教學(xué)模式進(jìn)行教學(xué)實(shí)驗(yàn).為了解教改實(shí)效,期中考試后,分別從兩個班中各隨機(jī)抽取名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì),得到如下的莖葉圖:

(Ⅰ)求甲、乙兩班抽取的分?jǐn)?shù)的中位數(shù),并估計(jì)甲、乙兩班數(shù)學(xué)的平均水平和分散程度(不要求計(jì)算出具體值,給出結(jié)論即可);

(Ⅱ)若規(guī)定分?jǐn)?shù)在的為良好,現(xiàn)已從甲、乙兩班成績?yōu)榱己玫耐瑢W(xué)中,用分層抽樣法抽出位同學(xué)進(jìn)行問卷調(diào)查,求這位同學(xué)中恰含甲、乙兩班所有分以上的同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,.記,設(shè)數(shù)列的前項(xiàng)和為,求證:當(dāng)時.

(Ⅰ)

(Ⅱ);

(Ⅲ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

2)設(shè)、為曲線上位于第一,二象限的兩個動點(diǎn),且,射線,交曲線分別于點(diǎn),.面積的最小值,并求此時四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司招聘快遞騎手,該公司提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞騎手每完成一單業(yè)務(wù)提成3元:方案(2)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快遞公司記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.

(Ⅰ)隨機(jī)選取一天,估計(jì)這一天該快遞公司的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(Ⅱ)若騎手甲、乙、丙選擇了日工資方案(1),丁、戊選擇了日工資方案(2).現(xiàn)從上述5名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案(2)的概率;

(Ⅲ)若僅從人均日收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為新聘騎手做出日工資方案的選擇,并說明理由(同組中的每個數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征和嚴(yán)重急性呼吸綜合征等較嚴(yán)重疾病. 而今年出現(xiàn)的新型冠狀病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株. 人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等. 在較嚴(yán)重病例中感染可導(dǎo)致肺獎、嚴(yán)重急性呼吸綜合征、賢衰竭,甚至死亡.核酸檢測是診斷新冠肺炎的重要依據(jù),首先取病人的唾液或咽拭子的樣本,再提取唾液或咽拭子樣本里的遺傳物質(zhì),如果有病毒,樣本檢測會呈現(xiàn)陽性,否則為陰性. 根據(jù)統(tǒng)計(jì)發(fā)現(xiàn),疑似病例核酸檢測呈陽性的概率為,現(xiàn)有例疑似病例,分別對其取樣、檢測,多個樣本檢測時,既可以逐個化驗(yàn),也可以將若干個樣本混合在一起化驗(yàn),混合樣本中只要有病毒,則混合樣本化驗(yàn)結(jié)果就會呈陽性,若混合樣本呈陽性,則將該組中各個樣本再逐個化驗(yàn);若混合樣本呈陰性,則該組各個樣本均為陰性.現(xiàn)有以下三種方案:

方案一:逐個化驗(yàn);

方案二:四個樣本混在一起化驗(yàn);

方案三: 平均分成兩組化驗(yàn).

在新冠肺炎爆發(fā)初期,由于檢查能力不足,化檢次數(shù)的期望值越小,則方案越“優(yōu)”.

1)若,求個疑似病例樣本混合化驗(yàn)結(jié)果為陽性的概率;

2)若,現(xiàn)將該例疑似病例樣本進(jìn)行化驗(yàn),請問:方案一、二、 三中哪個最“優(yōu)”?

3)若對例疑似病例樣本進(jìn)行化驗(yàn),且“方案二”比“方案一”更“優(yōu)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(肺炎疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為,兩個小組,排查工作期間社區(qū)隨機(jī)抽取了100戶已排查戶,進(jìn)行了對排查工作態(tài)度是否滿意的電話調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表.

是否滿意

組別

不滿意

滿意

合計(jì)

16

34

50

2

45

50

合計(jì)

21

79

100

1)分別估計(jì)社區(qū)居民對組、組兩個排查組的工作態(tài)度滿意的概率;

2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關(guān)?

附表:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠制作如圖所示的一種標(biāo)識,在半徑為R的圓內(nèi)做一個關(guān)于圓心對稱的H圖形,H型圖形由兩豎一橫三個等寬的矩形組成,兩個豎直的矩形全等且它們的長邊是橫向矩形長邊的倍,設(shè)O為圓心,,H型圖形的面積為S.

1)將AB、ADR表示,并將S表示成的函數(shù);

2)為了突出H型圖形,設(shè)計(jì)時應(yīng)使S盡可能大,則當(dāng)為何值時,S最大?并求出S的最大值.

查看答案和解析>>

同步練習(xí)冊答案