(本小題滿分14分)
已知是定義在R上的奇函數(shù),且,求:
(1)的解析式。
(2)已知,求函數(shù)在區(qū)間上的最小值。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
設(shè)函數(shù)滿足:對任意的實數(shù)有
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)已知函數(shù).
⑴若函數(shù)的圖象過原點,且在原點處的切線斜率是,求的值;
⑵若函數(shù)在區(qū)間上不單調(diào),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分18分)如果函數(shù)的定義域為,對于定義域內(nèi)的任意,存在實數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”.
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”求出所有的值;若不具有“性質(zhì)”,請說明理由.
(2)已知具有“性質(zhì)”,且當(dāng)時,求在上的最大值.
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時,.若與交點個數(shù)為2013個,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題13分)已知函數(shù)。
(Ⅰ)若,試判斷并證明的單調(diào)性;
(Ⅱ)若函數(shù)在上單調(diào),且存在使成立,求的取值范圍;
(Ⅲ)當(dāng)時,求函數(shù)的最大值的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且
(1)若函數(shù)是偶函數(shù),求的解析式;(3分)
(2)在(1)的條件下,求函數(shù)在上的最大、最小值;(3分)
(3)要使函數(shù)在上是單調(diào)函數(shù),求的范圍。(4分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)
(1)當(dāng)的取值范圍;
(2)是否存在這樣的實數(shù),使得函數(shù)在區(qū)間上為減函數(shù),且最大值為1,若存在,求出值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com