已知Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)
(n∈N*)的值是
2008
2009
,則n=______.
∵Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)

=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1

n
n+1
=
2008
2009

∴n=2008
故答案為:2008
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)
(n∈N*)的值是
2008
2009
,則n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn=
1
1+
2
+
1
2
+
3
+
1
3
+2
+…+
1
n
+
n+1
.若Sm=9,則m=
99
99

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)
,n∈N*
,則S10=
10
11
10
11

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知Sn=
1
1+
2
+
1
2
+
3
+
1
3
+2
+…+
1
n
+
n+1
.若Sm=9,則m=______.

查看答案和解析>>

同步練習冊答案