【題目】直線y=x與函數(shù)的圖象恰有三個公共點,則實數(shù)m的取值范圍是

【答案】﹣1≤m<2
【解析】根據(jù)題意,直線y=x與射線y=2(x>m)有一個交點A(2,2),
并且與拋物線y=x2+4x+2在(﹣∞,m]上的部分有兩個交點B、C
, 聯(lián)解得B(﹣1,﹣1),C(﹣2,﹣2)
∵拋物線y=x2+4x+2在(﹣∞,m]上的部分必須包含B、C兩點,
且點A(2,2)一定在射線y=2(x>m)上,才能使y=f(x)圖象與y=x有3個交點
∴實數(shù)m的取值范圍是﹣1≤m<2
故答案為:﹣1≤m<2

根據(jù)題意,求出直線y=x與射線y=2(x>m)、拋物線y=x2+4x+2在(﹣∞,m]上的部分的三個交點A、B、C,且三個交點必須都在y=f(x)圖象上,由此不難得到實數(shù)m的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1= , b2= , 對任意n∈N* , 都有bn+12=bnbn+2
求數(shù)列{an}、{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)=(2x-x2)ex

(-,)是f(x)的單調遞減區(qū)間;

f(-)是f(x)的極小值,f()是f(x)的極大值;

f(x)沒有最大值,也沒有最小值;

f(x)有最大值,沒有最小值.

其中判斷正確的是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A,BC對應的邊分別是a,bc,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱BCF﹣ADE的側面CFED與ABFE都是邊長為1的正方形,M、N兩點分別在AF和CE上,且AM=EN.
(1)求證:平面ABCD⊥平面ADE;
(2)求證:MN∥平面BCF;
(3)若點N為EC的中點,點P為EF上的動點,試求PA+PN的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在梯形中,.將梯形所在的直線旋轉一周而形成的曲面所圍成的幾何體的表面積為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是(  )
A.=(0,0), =(1,2)
B.=(﹣1,2),=(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:指數(shù)函數(shù)f(x)=(2a-6)x在R上是單調減函數(shù);q:關于x的方程x2-3ax+2a2+1=0的兩根均大于3,若pq為真,pq為假,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案