【題目】設p:實數(shù)x滿足,其中,命題實數(shù)滿足

|x-3|≤1 .

(1)若為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)a的取值范圍.

【答案】1;(2.

【解析】試題分析:

求出對應的集合:,

(1)為真,則均為真,求交集可得的范圍;

(2) 的充分不必要條件,即的充分不必要條件,因此有集合是集合的真子集.

試題解析:

(1)由時,1<,即為真時實數(shù)的取值范圍是1<.由|x-3|≤1, 得-1≤x-3≤1, 得2≤x≤4即為真時實數(shù)的取值范圍是2≤x≤4,若為真,則真且真,所以實數(shù)的取值范圍是.

(2) 由, 的充分不必要條件,即 ,且 , 設A=,B=,則,

A==, B=={x|x>4 or x<2},

則3a>4且a<2其中所以實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各進行3次投籃,甲每次投中目標的概率為,乙每次投中目標的概率為,假設兩人投籃是否投中相互之間沒有影響,每次投籃是否投中相互之間也沒有影響。

1)求甲至少有一次未投中目標的概率;

2)記甲投中目標的次數(shù)為,求的概率分布及數(shù)學期望;

3)求甲恰好比乙多投中目標2次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司設計如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線段(圖中的)和兩個半圓構成,設,且.

(1)若內(nèi)圈周長為,則取何值時,矩形的面積最大?

(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為,則取何值時,內(nèi)圈周長最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12)

如圖,在四棱錐PABCD中,底面ABCD是矩形,PA平面ABCD,AP=AB,BP=BC=2,EF分別是PB,PC的中點.

()證明:EF平面PAD;

()求三棱錐EABC的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關命題的說法正確的有( 。

1)若pq為假命題,則p、q均為假命題;

2x1”x23x+20”的充分不必要條件;

3)若pq為假命題,則p∧¬q為真命題.

4)命題x23x+20,則x1”的逆否命題為:x≠1,則x23x+2≠0”

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)準備投入適當?shù)膹V告費對甲產(chǎn)品進行促銷宣傳,在一年內(nèi)預計銷量(萬件)與廣告費(萬元)之間的函數(shù)關系為,已知生產(chǎn)此產(chǎn)品的年固定投入為萬元,每生產(chǎn)1萬件此產(chǎn)品仍需要再投入30萬元,且能全部銷售完,若每件甲產(chǎn)品銷售價格(元)定為:“平均每件甲產(chǎn)品生產(chǎn)成本的150%”與“年平均每件產(chǎn)品所占廣告費的50%”之和,則當廣告費為1萬元時,該企業(yè)甲產(chǎn)品的年利潤比不投入廣告費時的年利潤增加了__________萬元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一般地,對于直線及直線外一點,我們有點到直線的距離公式為:

(1)證明上述點到直線的距離公式

(2)設直線,試用上述公式求坐標原點到直線距離的最大值及取最大值時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學生對學校某項教改試驗的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C過點M0-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設直線ax-y+1=0與圓C交于AB兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案