隨機(jī)變量的分布列

(1)如果隨機(jī)試驗(yàn)的結(jié)果可以用一個_________來表示,那么這樣的_________叫做隨機(jī)變量;

(2)設(shè)隨機(jī)變量ξ可能取的值為X1、X2,…,Xi,…,ξ取每一個值Xi(i=1,2,…,n,…)的概率PXi)=Pi,則稱表

為隨機(jī)變量ξ的概率分布,具有性質(zhì):①_________(i=1,2…,n…);②P1P2+…=_________.

隨機(jī)變量在某一范圍內(nèi)取值的概率等于它取這個范圍內(nèi)各個值的概率_________.

答案:
解析:

(1)變量 變量 (2)Pi≥0 1之和


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)甲乙兩人進(jìn)行圍棋比賽,約定每局勝者得1分,負(fù)者得0分(無平局),比賽進(jìn)行到有一人比對方多2分或打滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為
5
9

(Ⅰ)若右圖為統(tǒng)計(jì)這次比賽的局?jǐn)?shù)n和甲、乙的總得分?jǐn)?shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設(shè)ξ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.
注:“n=0”,即為“n←0”或?yàn)椤皀:=0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校的學(xué)生記者團(tuán)由理科組和文科組構(gòu)成,具體數(shù)據(jù)如下表所示:
組別 理科 文科
性別 男生 女生 男生 女生
人數(shù) 5 4 3 2
學(xué)校準(zhǔn)備從中選出4人到社區(qū)舉行的大型公益活動進(jìn)行采訪,每選出一名男生,給其所在小組記1分,每選出一名女生則給其所在小組記2分,若要求被選出的4人中理科組、文科組的學(xué)生都有.
(1)求理科組恰好記4分的概率?
(2)設(shè)文科男生被選出的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在由1,2,3,4,5組成可重復(fù)的三位數(shù)中任取一個,記隨機(jī)變量ξ表示三位數(shù)中最大數(shù)字與最小數(shù)字的差(例如取113時(shí),ξ=3-1=2)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)已知隨機(jī)變量ξ的分布列如表所示:
x -1 0 1 2
P(ξ=x) a b c
1
12
若Eξ=0,Dξ=1,則b=
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•武漢模擬)在一個單位中普查某種疾病,600個人去驗(yàn)血,對這些人的血的化驗(yàn)可以用兩種方法進(jìn)行:
方法一:每個人的血分別化驗(yàn),這時(shí)需要化驗(yàn)600次;
方法二:把每個人的血樣分成兩份,取k(k≥2)個人的血樣各一份混在一起進(jìn)行化驗(yàn),如果結(jié)果是陰性的,那么對這k個人只作一次檢驗(yàn)就夠了;如果結(jié)果陽性的,那么再對這k個人的另一份血樣逐個化驗(yàn),這時(shí)對這k個人共需作k+1次化驗(yàn).
假定對所有的人來說,化驗(yàn)結(jié)果是陽性的概率是0.1,而且這些人的反應(yīng)是獨(dú)立的.將每個人的血樣所需的檢驗(yàn)次數(shù)作為隨機(jī)變量ξ.
(1)寫出方法二中隨機(jī)變量ξ的分布列,并求數(shù)學(xué)期望Eξ(用k表示);
(2)現(xiàn)有方法一和方法二中k分別取3、4、5共四種方案,請判斷哪種方案最好,并說明理由.(參考數(shù)據(jù):取0.93=0.729,0.94=0.656,0.95=0.591)

查看答案和解析>>

同步練習(xí)冊答案