半徑為1的球的內(nèi)接正三棱柱(底面是正三角形的直棱柱)的側(cè)面積為3
3
,則正三棱柱的高為( �。�
A、2
2
B、
3
C、2
3
D、
2
考點(diǎn):球內(nèi)接多面體
專題:
分析:畫出圖形,設(shè)底面正三角形的邊長為a,判斷外接球的球心位置,利用棱柱的側(cè)面積表示出棱柱的高,然后根據(jù)勾股定理求得棱柱的高的一半,進(jìn)而得到結(jié)果.
解答: 解:如圖所示,設(shè)球心為O,正三棱柱的上下底面的中心分別為O1,O2,球心為O,
底面正三角形的邊長為a,高為h,
則AO2=
2
3
×
3
2
a=
3
3
a
.棱柱的側(cè)面積3ah=3
3
,h=
3
a

由已知得O1O2⊥底面,
在Rt△OAO2中,∠AO2O=90°,由勾股定理得OO2=
3
2a
,
(
3
3
a)2+(
3
2a
)2=12
,解答a=
6
2

h=
3
a
=
3
6
2
=
2

故選:D.
點(diǎn)評:本題考查了球的內(nèi)接正三棱柱的側(cè)面積,球的半徑的求法,考查空間想象能力以及計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)的一個(gè)對稱中心為(-
12
,0);
②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域?yàn)閇-1,
2
2
];
③若α、β均為第一象限角,且α>β,則sinα>sinβ.
④f(x)=4sin(2x+
π
3
)(x∈R),由f(x1)=f(x2)=0可得x1-x2是π的整數(shù)倍;
⑤若f(x)是R上的奇函數(shù),它的最小正周期為T,則f(-
T
2
)=0.
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xn+1(n∈N*)的圖象與直線x=1交于點(diǎn)P,若函數(shù)f(x)的圖象在點(diǎn)P處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn,則log2014x1+log2014x2+…+log2014x2013的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足不等式
4x-y+2≥0
2x+y-8≥0
x≤2
,設(shè)z=
y
x
,則z的最大值與最小值的差為( �。�
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B、C、D是空間四個(gè)不同的點(diǎn),在下列命題中,不正確的是( �。�
A、若直線AB與CD沒有公共點(diǎn),則AB∥CD
B、若AC與BD共面,則AD與BC共面
C、若AC與BD是異面直線,則AD與BC是異面直線
D、若AB=AC,DB=DC,則AD⊥BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-2,1),若點(diǎn)M(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
上的一個(gè)動點(diǎn),則
OA
OM
的取值范圍是( �。�
A、[-1,0]
B、[-1,2]
C、[0,1]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論錯(cuò)誤的是( �。�
A、命題“若p,則q”與命題“若非q,則非p”互為逆否命題
B、“sinx=
1
2
”是“x=
π
6
”的充分而不必要條件
C、為得到函數(shù)y=sin(2x-
π
3
)的圖象只需把y=sin(2x+
π
6
)的圖象向右平移
π
4
個(gè)長度單位
D、命題q:?x∈R,sinx-cosx≤
2
,則¬q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列古典概型的說法中正確的個(gè)數(shù)是( �。�
①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);
②每個(gè)事件出現(xiàn)的可能性相等;
③基本事件的總數(shù)為n,隨機(jī)事件A包含k個(gè)基本事件,則P(A)=
k
n
;
④每個(gè)基本事件出現(xiàn)的可能性相等.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為a的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱D1D的中點(diǎn),點(diǎn)F在棱B1B上,且滿足B1F=2FB.
(1)求證:EF⊥A1C1
(2)在棱C1C上確定一點(diǎn)G,使A,E,G,F(xiàn)四點(diǎn)共面,并求此時(shí)C1G的長;
(3)求平面AEF與平面ABCD所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案