如圖,是拋物線(為正常數(shù))上的兩個(gè)動(dòng)點(diǎn),直線AB與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,且

(Ⅰ)求證:直線AB過拋物線C的焦點(diǎn);

(Ⅱ)是否存在直線AB,使得若存在,求出直線AB的方程;若不存在,請說明理由。

 

【答案】

(1)先求解直線AB的方程,來分析過定點(diǎn)。(2)直線方程為

【解析】

試題分析:(Ⅰ)由題意知,直線的斜率存在,且不為零.

設(shè)直線的方程為: (,

,得.∴,  

. 

,∴,∵,∴

∴直線的方程為:

拋物線的焦點(diǎn)坐標(biāo)為,∴直線過拋物線C的焦點(diǎn).    

(Ⅱ)假設(shè)存在直線,使得, 即

軸,軸,垂足為、,

      

,        

==

,得

故存在直線,使得.直線方程為

考點(diǎn):本試題考查了直線與拋物線的關(guān)系運(yùn)用。

點(diǎn)評(píng):解決直線與拋物線的位置關(guān)系的運(yùn)用問題,一般都要考查了拋物線的定義的運(yùn)用,即拋物線上點(diǎn)到焦點(diǎn)的距離等于對其到準(zhǔn)線的距離來解答,同時(shí)直線與拋物線的位置關(guān)系,也要結(jié)合設(shè)而不求的聯(lián)立方程組的思想,結(jié)合韋達(dá)定理得到根與系數(shù)的關(guān)系,進(jìn)而得到證明的結(jié)論,屬于難度試題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長為4km的正方形地域,地域內(nèi)有一條河流從A流到E,且河流是以A為頂點(diǎn)開口向上的一段拋物線弧,其中E為BC的中點(diǎn).某公司準(zhǔn)備投資建一個(gè)大型矩形游樂園PMDN,問如何修建才能使得游樂園的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是拋物線C:x2=2y上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),直線l過點(diǎn)P且與拋物線交于另一點(diǎn)Q,已知P(x1,y1),Q(x2,y2).
(1)若l經(jīng)過點(diǎn)F,求弦長|PQ|的最小值;
(2)設(shè)直線l:y=kx+b(k≠0,b≠0)與x軸交于點(diǎn)S,與y軸交于點(diǎn)T
①求證:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•莆田模擬)如圖,F(xiàn)是拋物線E:y2=2px(p>0)的焦點(diǎn),A是拋物線E上任意一點(diǎn).現(xiàn)給出下列四個(gè)結(jié)論:
①以線段AF為直徑的圓必與y軸相切;
②當(dāng)點(diǎn)A為坐標(biāo)原點(diǎn)時(shí),|AF|為最短;
③若點(diǎn)B是拋物線E上異于點(diǎn)A的一點(diǎn),則當(dāng)直線AB過焦點(diǎn)F時(shí),|AF|+|BF|取得最小值;
④點(diǎn)B、C是拋物線E上異于點(diǎn)A的不同兩點(diǎn),若|AF|、|BF|、|CF|成等差數(shù)列,則點(diǎn)A、B、C的橫坐標(biāo)亦成等差數(shù)列.
其中正確結(jié)論的個(gè)數(shù)是( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)是拋物線y2=4x的焦點(diǎn),Q是準(zhǔn)線與x軸的交點(diǎn),直線l經(jīng)過點(diǎn)Q.
(Ⅰ)直線l與拋物線有唯一公共點(diǎn),求l方程;
(Ⅱ)直線l與拋物線交于A、B兩點(diǎn);(i)設(shè)FA、FB的斜率分別為k1,k2,求k1+k2的值;
(ii)若點(diǎn)R在線段AB上,且滿足
|AR|
|RB|
=|
AQ
QB
|
,求點(diǎn)R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“笑臉曲線”由曲線C1和C2構(gòu)成,如圖,C1是以O(shè)為頂點(diǎn)、F為焦點(diǎn)的拋物線的一部分,曲線C2是以O(shè)為焦點(diǎn)、Q為頂點(diǎn)的拋物線的一部分,A(4
2
,2)是曲線C1和C2的交點(diǎn),
(1)求曲線C1和C2所在的拋物線方程;
(2)在C2上是否存在點(diǎn)P,AP交x軸于M,使△OAM為等腰三角形?如果存在,求出P點(diǎn)坐標(biāo),如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案