【題目】已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a2b2,且b2a1、a2的等差中項,a2b2、b3的等差中項.

(1)求數(shù)列{an}{bn}的通項公式;

(2),求數(shù)列{cn}的前n項和Sn.

【答案】(1)an=2n-1,bn=2n-1;(2).

【解析】

(1)設公比及公差分別為q,d,由2b2=a1+a2,2a2=b2+b3,解得q=2,d=2,由此能求出數(shù)列{an}與{bn}的通項公式.

(2)由,利用分組求和法和錯位相減法能求出數(shù)列{cn}的前n項和Sn

(1)設公比及公差分別為q,d

則2b2=a1+a2,2a2=b2+b3,∴2q=2+d,2+2d=q+q2,

解得:q=1,d=0或q=d=2,

a2b2,∴q=d=2.

an=2n-1,bn=2n-1.

(2)∵,,

.

…①

…②

由②-①得

,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一袋中裝有10個大小相同的黑球和白球.已知從袋中任意摸出2個球,至少得到1個白球的概率是.

(1)求白球的個數(shù);

(2)從袋中任意摸出3個球,記得到白球的個數(shù)為,求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)一噸甲產(chǎn)品、一噸乙產(chǎn)品所需要的煤、電以及產(chǎn)值如表所示;又知道國家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問該廠如何安排生產(chǎn),才能使該廠日產(chǎn)值最大?最大的產(chǎn)值是多少?

用煤(噸)

用電(千瓦)

產(chǎn)值(萬元)

生產(chǎn)一噸

甲種產(chǎn)品

7

2

8

生產(chǎn)一噸

乙種產(chǎn)品

3

5

11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}滿足a1=,.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列{an}的通項公式;(2)設cn=(3n+1)an,證明:數(shù)列{cn}中任意三項不可能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn . 若對n∈N* , 總k∈N* , 使得Sn=ak , 則稱數(shù)列{an}是“G數(shù)列”. (Ⅰ)若數(shù)列{an}是等差數(shù)列,其首項a1=1,公差d=﹣1.證明:數(shù)列{an}是“G數(shù)列”;
(Ⅱ)若數(shù)列{an}的前n項和Sn=3n(n∈N*),判斷數(shù)列{an}是否為“G數(shù)列”,并說明理由;
(Ⅲ)證明:對任意的等差數(shù)列{an},總存在兩個“G數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l1過點A(0,1),l2過點B(5,0),如果l1l2,且l1與l2的距離為5,求l1、l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點F為拋物線E:x2=4y的焦點,直線l為準線,C為拋物線上的一點(C在第一象限),以點C為圓心,|CF|為半徑的圓與y軸交于D,F(xiàn)兩點,且△CDF為正三角形.
(Ⅰ)求圓C的方程;
(Ⅱ)設P為l上任意一點,過P作拋物線x2=4y的切線,切點為A,B,判斷直線AB與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

,函數(shù)在上的最小值為4,求a的值;

對于中的函數(shù)在區(qū)間A上的值域是,求區(qū)間長度最大的注:區(qū)間長度區(qū)間的右端點區(qū)間的左斷點;

中函數(shù)的定義域是解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,其準線與軸交于點,作斜率為的直線與拋物線交于兩點,的中點為的垂直平分線與軸交于

(1)的取值范圍;

(2)求證: .

查看答案和解析>>

同步練習冊答案