在△ABC中,AB=3AD,DE∥BC,EF∥AB,若AB=9,DE=2,則線段FC的長為(    )

1-2-13

A.6                 B.5                 C.4                D.3

解析:∵DE∥BF,BD∥EF,

∴四邊形BDEF為平行四邊形.∴DE=BF=2.

∵DE∥BC,∴=.

∵AB=3AD,∴==.∴=.

∴BC=3BF=6.∴FC=BC-BF=6-2=4.

答案: C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖1,在△ABC中AB⊥AC、AD⊥BC,D是垂足,則AB2=BD•BC(射影定理).類似的有命題:在三棱錐A-BCD(圖2)中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),則(S△ABC2=S△BCO•S△BCD(S表示面積.上述命題(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2
ωx
2
+sinωx-1(ω>0)在一個周期內(nèi)的圖象如圖所示,且在△ABC中AB=AC=
6

(1)化簡該函數(shù)表示式,并求出該函數(shù)的值域;
(2)求ω的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中AB=2,C=30°,則
3
BC-AC 的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中AB=c,AC=b,D為線段BC上一點,且∠BAD=α,∠CAD=β,線段AD=l.
(1)求證:
sinα
b
+
sinβ
c
=
sin(α+β)
l

(2)若AB=4
2
,AC=4
,∠BAD=30°,∠CAD=45°,試求線段AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江西省高二下學期第一次月考文科數(shù)學 題型:解答題

(本小題滿分12分)已知函數(shù)

  (1)設(shè),且,求的值;

  (2)在△ABC中,AB=1,,且△ABC面積為,求sinA+sinB的值.

 

查看答案和解析>>

同步練習冊答案